旧橋の木杭載荷試験

大阪支店 土木事業部 富田 徹

大阪支店 土木事業部 高山 明久

概要:本業務は,昭和10年に施工された木杭の鉛直載荷試験,水平載荷試験を実施して, 実際的な杭の特性を把握するとともに,引き抜き後の外観観察と,木杭の室内試験を実施し,木杭打設前後の地盤との相互特性について詳細に調査した.さらに,載荷試験結 果をふまえて,現状の外力条件から,旧橋の杭基礎の支持力特性の検討を試みた.これ らの結果を踏まえて,大阪市内に多く存在する木杭がどのレベルにあるか,また,架替 えや補強対策の優先順位,現況保存の有効利活用等について考察した.

Key Words: 木杭, 鉛直載荷試験, 水平交番載荷試験, データベース, 残留杭, 耐震診断

1. はじめに

昭和初期に竣工の春日出橋(図-1)は,平成7年の兵庫県南部地震のときにも大きな被害はなく供用されてき たが,老朽化,交通量の増加,機能低下により,新設橋に架け替えられることになり,鋭意,工事がすすめ られている.本工事の際に既設橋台を撤去したところ,竣工当時の基礎である木杭が健全な状態にあること が確認された.

このように,大阪市内には,昭和初期に竣工した木杭を基礎とした橋梁が多数存在し,道路拡幅などの橋 梁架け替え時,木杭の撤去に多くの費用をかけている.したがって,今回明らかになった健全な木杭を存置 して利用することができれば,社会資本整備におけるコスト縮減に寄与することから,既設木杭の特性につ いて試験を行ったものである.

調査は,木杭の支持力特性を把握するための鉛直載荷試験,水平抵抗に関する特性を把握するための水平 交番載荷試験,および杭周辺地盤の状態を把握するためのボーリングや原位置試験,室内試験を行った.

鉛直載荷試験は単杭と群杭で実施し,それぞれの支持力特性の違いについての評価を行った.水平交番載 荷試験は鉛直に設置された単杭に静的な水平力を載荷して木杭の水平抵抗について評価を行った.また,ボ ーリング調査では,杭打設前後の地盤強度の変化を確認した.

これら調査結果をふまえて,現状の外力条件から,当時の春日出橋の,杭基礎の支持力特性の検討を試みた.地震時の加速度については,図-1に示す平成7年1月17日,阪神・淡路大震災の時に春日出橋付近で 発生したと考えられる加速度(200~300gal)や道路橋示方書の中規模地震レベルに対して検討した.

本業務が,大阪市内に多く存在する類似の木杭が,どのレベルにあるかの判断資料として,また,架替えや補強 対策の優先順位等,現況保存の有効利活用等の資料となれば幸いである.

🭎 株式会社 ピーエス 三菱 技報 第2号 (2004年)

5 (m)

図-2 各調査の実施箇所

🛑:鉛直載荷試験実施杭 🚆:ボーリング実施位置

●:水平載荷試験実施杭 ●:材質調査用試料採取杭

3. 調查方法

(1) 地盤調査

地盤調査は,調査地点の地盤性状を把握するとともに,杭の有無による地盤物性値の違いを調べることを 目的とし,木杭に囲まれた地点1箇所(杭の載荷試験実施位置近傍)と木杭から離れた地点1箇所でボーリ ング調査を実施した.調査位置を図-3に示す.

(2) 木杭の材質調査

木杭は施工されてから約70年経過しており,その状況および材質について把握することを目的とた. a)外観調査

外観調査は,図-4および写真-1に示すように,杭引抜き後,各ブロックの代表杭について寸法を測定し, 外観を観察した.また,代表的な杭を4本抽出して切断し,切断面を観察した.

b)材質試験

木材の材質試験は,代表的な杭を4本抽出し,その中心部から試験体を切り出して(写真-1),含水率試験,密度試験および圧縮試験を実施した.圧縮試験は,「JIS Z2101-木材の試験方法」に準じて行った.

* 圧縮試験はそれぞれの杭の中で実施する 各杭の観察は上、中、下を目視観察する

図-4 材質試験の切り出し位置概念図

A ブロック木杭切断面

B ブロック木杭切断面

C ブロック木杭切断面

D ブロック木杭切断面

写真-1 木杭の切断面

(3) 木杭の鉛直載荷試験

今回試験対象となる木杭,は約70年間にわたり荷重を受けているため,木杭の支持力の場所的変化や,群 杭効果による支持力の相違が想定される.本調査では,単杭の場所的な鉛直支持力特性把握のため単杭鉛直 載荷試験と,単杭と群杭との鉛直支持力特性の相違を把握するため4本の杭を用いて行う群杭鉛直載荷試験 の2種類の鉛直載荷試験を実施した.

これらの鉛直載荷試験は,地盤工学会発刊の「地盤工学会基準杭の鉛直載荷試験方法・同解説-第一回改 訂版」²⁾(以下,「鉛直基準」と略記)」を参考にして実施した.

a) 試験杭の仕様

杭径:頭部 350~先端 200mm

杭長∶L=15m

b) 試験数量および位置

鉛直載荷試験は,単杭鉛直載荷試験を3箇所と群杭鉛直載荷試験を1箇所で実施した.試験位置は橋台撤去後に,平面的に均等に分布するように木杭位置と切梁位置等との関係を勘案して決定した.鉛直載荷試験の位置を 図-5に示す.

図-5 木杭の鉛直載荷試験位置図

c) 計画最大荷重

A1橋台位置での既往地盤調査結果から,木杭は,図-6 に示 すように砂層(As1)と粘性土層(Ac2)に設置されている. そこで,計画最大荷重は,木杭の周面抵抗力と新規に設置する橋

梁の設計荷重を考慮して決定した.

・周面抵抗力

木杭の周面抵抗力 P は次のようになる.ただし c は粘着力, A は 木杭周面積である.

 $P=c \times A$

既往調査では,木杭が設置されている粘性土層の粘着力 c は 44.1 k N/m² である.

杭径は既存資料では 0.2m であるが,後述するように,現地で露出 した杭頭部の杭径は 0.35m であった.よって木杭の周面積は, 杭を先端部(杭口)が 0.2m で杭頭部が 0.35m である直円錐台と

図-6 木杭の載荷試験位置の地層状況

仮定して計算した.これらより木杭周面に作用する周面抵抗力 P は次のようになる.

c = 44.1 (k N/m²) (粘着力)

A= ×15×(0.1+0.175)=13.0(m²) (木杭の周面積)

P=c×A=44.1×13.0=573.3 (kN) (周面抵抗力) 予想される第2限界抵抗力

·新規橋梁設計荷重

新規橋梁の全荷重は常時で約23,000kN である.仮に,この荷重を既存木杭で受けると仮定すると,全体で90本であるので,木杭一本あたりでは255.6kN となるが,これは,前述の粘着力から算出した木杭の周面抵抗力の方が大きい.

よって計画最大荷重は, 予想される第2限界抵抗力以上の値, 反力装置の施工性, 載荷パターンの ステップ数を考慮して 800kN に設定した.

d) 試験装置

鉛直載荷試験の試験装置は,試験杭,載荷装置,反力装置,および測定装置で構成される.また,荷重を載荷 する試験杭の杭頭部は変形や座掘を防ぐために補強を行っている.詳細を以下に示すとともに,単杭鉛直載荷試 験装置の概要を図-7 に,群杭鉛直載荷試験装置の概要を図-8 にそれぞれ示す.

図-7 単杭載荷試験の概要説明図

図-8 群杭載荷試験の概要説明図

杭頭部の補強

地表面より0.5mの杭頭部は,載荷した荷重による変形や座屈を防ぐた めに補強を行った.補強は,露出した木杭の杭頭に鋼管(400mm)をか ぶせて,木杭と鋼管の隙間にモルタルを充填した.また,地表面と鋼管の 間には砂を充填して,試験実施時はそれを除去して空間を設けた(図-9 に示す).

載荷装置

単杭鉛直載荷試験では,杭頭部の上にセメントペーストを打設して載荷 板と杭頭部とを密着させた.油圧ジャッキは最大荷重1500kN,ロードセル は定格荷重1000kN,球座はロードセルに付いているものを使用した。

群杭鉛直載荷試験は,試験杭上にH形鋼と溝形鋼を用いた載荷台を設 置して、その載荷台の上に油圧ジャッキを1台設置した、球座は、単杭鉛直 載荷試験と同様にロードセルの球座を使用した.

反力装置は反力架台と反力抵抗体からなる.反力架台は試験杭以外の 木杭を用いて施工した、反力抵抗体は鋼板(1500mm×3100mm×25mm,1) 図-9 杭頭部の補強

枚あたりの重量 8.9kN)を使用して、反力架台上に 120 枚積載した、また主梁には H 形鋼を用いた、

主梁となる H 形鋼は,計画最大荷重に対し十分な抵抗力を有する必要がある.この H 形鋼について,単純梁とし て荷重が梁の中心に作用した場合の剛性の検討を行った。

測定装置

測定装置は,荷重測定用に定格荷重 1000kN のロードセルを1 台,変位量測定として測定精度 1/100mmの変位計を4台それぞれ用いた、荷重制御およびデータの取得はパソコン上で管理した。

e) 載荷方法

鉛直載荷試験は,多サイクルで行う段階載荷方式とした.鉛直基準で規定されているサイクル数,載荷速度および 荷重保持時間を表-1に,載荷方法の種類を図-10にそれぞれ示す。

段階載荷方式の条件³⁾ 表-1

8段階以上							
1サイクルまたは4サイクル以上							
荷重增加時: 計画最大荷重 荷重段階数 /min							
荷重減少時:荷重増加時の2倍程度							
新規荷重段階	30min以上の一定時間						
履歴内の荷重段階	2min以上の一定時間						
0荷重段階	15min以上の一定時間						
	 8段階以上 1サイクルまたはな 荷重増加時:計画局 荷重 荷重減少時:荷重 荷重 新規荷重段階 履歴内の荷重段階 0荷重段階 						

88

地表面

図-10 載荷方法の種類³⁾

載荷方法は段階載荷方式と連続載荷方式の二種類がある、段階載荷方式は荷重を段階的に変化させ各段階で 一定時間保持する方式であり,長期的に作用する荷重条件を再現する場合に適した方式である.連続載荷方式は 荷重を保持せず連続的に増加する方式であり、地震などの短期的に作用する荷重条件を再現する場合に適した 方式である、荷重段階数は8段階以上であれば計画最大荷重より小さな荷重段階で試験が終了しても滑らかな荷 重 - 変位量曲線が得られる.サイクル数は、多サイクルと1サイクルがある、多サイクルの場合は繰返し荷重に対す る適応性が高く履歴特性を把握するに有効であり,1 サイクルの場合は試験時間が多サイクルと比べて短く簡易に 実施できる.

本試験では,限界抵抗力を求めることに加え,木杭の繰返し載荷における履歴特性を把握することも必要なことで あり,8荷重段階の多サイクル段階載荷方式を採用した.また,載荷・除荷速度および荷重保持時間は鉛直基準の 規定されているものを採用した.また,測定間隔については,荷重保持初期時での変位量の増加が予想されるの で,新規荷重段階および0(kN)荷重段階では0分から5分までは1分間間隔として,その後は5分間隔とした. 群杭鉛直載荷試験,単杭鉛直載荷試験との比較・検討であり,両試験は同様な試験仕様とした.

試験の仕様は以下のとおりである.また,図-11に載荷パターンを示す.

(4) 木杭の水平交番載荷試験

耐震設計上の課題・問題点の検討のために必要な水平地盤反力係数および杭~地盤系の履歴減衰定数を求め ることを目的として杭の水平載荷試験を実施した.

木杭の水平載荷試験は,土質工学会発刊の「土質工学会基準(JSF 規格:T-32-83) 杭の水平載荷試験方法・同 解説」³(以下,「水平基準)と略記)」を参考にして実施した.

a) 試験杭の仕様

杭径∶頭部 350~先端 200mm

杭長∶L=15m

b) 試験数量および位置

水平交番載荷試験は,1箇所で実施した.その位置を図-12に示す.試験杭は, 鉛直載荷試験に使用した木杭 以外の木杭, 試験杭と反力杭の間隔や位置関係, 試験装置の組立等の施工性,等を考慮して選定した.

図-12 木杭の水平交番載荷試験位置図

計画最大荷重

計画最大荷重は,設計において算定される許容水平荷重や許容水平変位量を考慮して設定するか,杭の破壊あ るいは地盤の破壊までの試験するならばその許容水平荷重以上の荷重を設定する.また,杭の諸係数(例えば, 杭の曲げ剛性)から許容応力を算出して最大荷重を設定することもできる.

しかし,木杭を基礎とした橋梁は,設計段階での資料や木杭の諸係数は,全く皆無であり,上記のような設定手段 は不可能である.

よって,計画最大荷重は,新設される橋梁基礎下端に作用する設計水平荷重および許容水平変位量を考慮して 設定した.

新設される橋梁の設計水平荷重および許容水平変位量は、次のとおりである、

- ・ 常 時 の水 平 荷 重 : 7,666kN
- ・ 地震時の水平荷重: 20,295kN
- ・ 許 容 水 平 変 位 量 : 15mm

仮に,地震時の水平荷重を木杭で受ける225.5kN/本となる.

一方,許容水平変位量15mmから計画最大荷重を設定するには,木杭の剛性が不明で,詳細な検討が不可であるため,以下のような計算を行った.

後述するように,今回,木杭間で実施した孔内水平載荷試験(Br.H15No.1:測定深度 2.60m)で得られた地盤係数 Km = 45.099MN/m³ から,水平変位量 が15mm となる場合の応力 を算出すると,次のようになる.

=Km × = 45.099 MN/m³ × 0.015mm = 0.676MN/m²

この応力が深さ 3m の範囲で作用すると仮定すると,作用する面積は,次のようになる.

 $A=0.35m \times 3m = 1.05 m^2$

15mm の水平変位量を生じさせるために必要な荷重は,次のようになる.

 $P = \times A = 0.676 MN/m^2 \times 1.05 m^2 = 0.710 MN(710 kN)$

この場合の水平変位量 15mm は, 深さ 3m の区間すべてで生じるもの と仮定しており, 杭頭を 15mm 変位させるために必要な荷重は, この荷重 の1 / 2以下(355kN 以下)で十分であると想定される.

また,図-12 に SC 杭における杭頭の水平荷重と変位の関係を示す.こ れによれば,孔内水平載荷試験で得られた地盤係数に近い値である水 平地盤反力 kh=50MN/m³(5kg/cm³)の時には,200kN(約 20tf)で 1.8cm 程度変位が生じている.

以上のことから,今回の計画最大荷重は試験の載荷段階(計画最大荷 重を8等分して設定)も考慮して 240kN(24.5tf)に設定した.

d) 試験装置

水平交番載荷試験装置は,試験杭,載荷装置,反力装置,および測定装置で構成される.それらの詳を以下に示 すとともに,反力用木杭の配置を図-13に,水平交番載荷試験装置の概要を図-14にそれぞれ示す.

杭頭部の補強

試験杭の杭頭部は,鉛直載荷試験と同様の方法で補強を行った.

試験杭の載荷点には,集中荷重が作用するため,割裂あるいは局部的座屈等が生じることが予想される.また,杭の断面形状が円であるため偏心作用が生じることも予想される.このような現象を解消するために,載荷点となる杭体の側部の補強を行った.補強は,図-14のように載荷点となる木杭の側面部に溝形鋼を溶接して杭体と溝形鋼の隙間にモルタルを充填して行った.

載荷装置

油圧ジャッキは最大荷重 1500kN, ロードセルは定格荷 重 500kN を使用し, 球座はロードセルに付いているものを 使用した.

反力装置

隣接する木杭2本を反力装置として使用した.反力の 配置は,試験杭と反力杭の離間距離と載荷装置配置のス ペースを考慮して,一方の反力は試験杭に対して直角方 向に位置する木杭を2本用い,もう一方の反力は試験杭 とほぼ直線上にある木杭を2本用いた.反力用鋼材には H形鋼を用いて接合部を溶接した.

図-15 変位計配置図と載荷点(水平載荷試験)

測定装置

測定装置は,荷重測定用に定格荷重 500kN のロードセルを2 台使用した.変位量測定は,試験杭と反力に用いた反力杭3本,合計4本の杭を対象に測定精度1/100の変位計を,杭1本あたり4 台用いて行った.荷重管理およびデータの取得はパソコン上で管理した.変位計の設置位置を図-15 に示す.

e) 載荷方法

載荷様式として,一方向載荷,正負交番載荷,試験方式は,一サイクル試験と,多サイクル試験 がある.水平基準では載荷様式は,地震外力のような繰返し荷重に対する影響や応力履歴の検討を目的とする場合 には、が適当であり,その必要がない場合には、でも十分であるとしている.

また, サイクルは, 単なる設計耐力の確認のみであれば で十分であるが, 正確な地盤 杭系の挙動の把握や, 地盤反力係数の算出等より多くの情報を望むのならば が適当としている.

よって,本試験は多サイクルで行う水平交番載荷試験とした.水平基準で規定されている載荷方法を表-2 に示す. 載荷点の高さは,図-15 に示すように極力地表面に近い位置とした.

試験仕様は,計画最大荷重を240kNに設定して基準で示されているサイクル数,載荷速度に準拠して設定 した.しかし,試験時に初期段階で大きな変位量が確認され,試験目的を満足できないと予想されたので,直ちに中 止して,試験仕様の再検討を行った.その結果,計画最大荷重は当初の半分の荷重である120kNとした.荷重段階 およびサイクル数は多くの測点数を確保するように基準の規定にあわせた.荷重速度の設定には基準で例示されて いる計画最大荷重を用いた算出方法を使用した.荷重速度の増荷時では「(計画最大荷重) / 16(kN/min)」,減荷 時では「(計画最大荷重) / 8(kN/min)」を用いて設定した.

試験仕様を以下のように設定した.図-16 に載荷パターンを示す.

·最大荷重 : 120 kN

- ·荷重段階数 : 8 段階
- ・サイクル数 : 4 サイクル
- ・増荷時の荷重速度 : 7.5kN/min
- ·減荷時の荷重速度 : 15kN/min
- ·荷重保持時間 : 3min
- ·測定間隔 : 増荷時 2分
 - 減荷時および荷重保持時間 1 分間隔

表-2 基準による載荷方式(交番載荷試験の場合)

項目	増 荷 時	演	睛 時			
荷重段階	8段階以上	同	左			
荷重速度	計画最大荷重 8~20 tf/分	<u>計画最大荷</u> <u>4~10</u>	重 tf/分			
荷重保持時間	各荷重段階 3分	同	左			
·	表 2 載荷方法(一方]	句載荷)				
項目	増 荷	時	減荷時			
古香风状叱問	処女荷重, 履歴内荷重	3分	<u> </u>			
0荷重 15分						
(注) 荷重段附	皆,荷重速度は表1に同じ。					

4. 調査結果

(1) 地盤調査

図-17 にボーリンク 柱状図,表-3 に当該地における 地盤調査結果の一覧表を示す.図-18には室内土質 試験結果の深度分布図を示す.当該地は上位から, 沖積砂層(As1),沖積粘性土層(Ac2),沖積第2砂層 (As2),沖積第3粘性土層(Ac3)が分布している.各層 の分布深度は,杭間と杭外側の差はあまりなく,概ね 水平と判断される.層厚に関しても,沖積粘性土層が 杭間側の沖積粘性土層が若干薄い程度であり,顕著 な差は見られない.Ac2層に関しては、その土質特性 から,3層に分類され,上位はシルト分優勢であり,中位 は粘土分優勢,下位は砂混じり粘土となっている.それ に伴い,物理試験結果や力学特性がばらついている. 物理的特性については、力学物性値と大きく関連する 含水比や湿潤密度及び間隙比等が,杭間側と杭外側 の差が顕著であり、杭打設の影響が現れていると判断 される.力学的特性については,一軸強度や圧密降伏 応力が概ね1.1~1.3 倍程度まで増加していることが窺 える、この傾向は、N値や孔内水平載荷試験結果 にも現れている、PS 検層は顕著な差は見られない、

図-17 ボーリング調査結果

		深度(m) ()()数字は層厚 半均N値				孔内水平	載荷試験		PS検層				
土層区分	土質区分	No1枯間	No2枯外	No1枯間	No2枯外	E(MN	E(MN/m2)		l/m3)	Vp(r	n/s)	V s (m / s)		
			11021117		1102111.71	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外	
Ac1	砂	0.00 ~ 1.80(1.80)	0.00 ~ 1.75(1.75)	19.5	7					1210	1010	280	110	
791	シルト混じり砂	1.80 ~ 3.00(1.2)	1.75 ~ 2.90(1.15)	-	-	2.772	2.284	45.099	39.297	1210	1010	200	110	
	シルト	3.00 ~ 6.00(3.0)	2.90 ~ 5.90(3.0)	3.5	2					940	1010	100	110	
Ac2	粘土	6.00 ~ 13.90(7.9)	5.90 ~ 13.90(8.0)	3.7	2.1					1360	1390	120	120	
	砂混じり粘土	13.90 ~ 16.70(2.8)	13.90 ~ 16.65 (2.75)	6	2					1360	1470	180	170	
As2	シルト混じり砂	16.70 ~ 19.85(3.15)	16.65 ~ 19.70(3.05)	6.7	4									
Ac3	粘土	19.85 ~ 22.50 (2.65)	19.70 ~ 22.50 (2.80)	6.7	4									

表-3(a) 原位置試験結果(その1)

		深度(m) ()数字は層厚	密度(密度(g/cm3)		比(%)	湿潤密度	E(g/cm3)	間隙		分	類
土層区分	土質区分	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外
Ac1	砂	0.00 ~ 1.80(1.80)	0.00 ~ 1.75(1.75)	2.680	2.678	24.70	32.20					粘性土質砂	粘性土質砂
7.91	シルト混じり砂	1.80 ~ 3.00(1.2)	1.75 ~ 2.90(1.15)										
	シルト	3.00 ~ 6.00(3.0)	2.90 ~ 5.90(3.0)	2.649	2.650	50.80	54.00	1.703	1.681	1.346	1.428	粘土	粘土
Ac2	粘土	6.00 ~ 13.90(7.9)	5.90 ~ 13.90(8.0)	2.648	2.652	67.90	70.40	1.591	1.583	1.794	1.854	粘土	粘土
	砂混じり粘土	13.90 ~ 16.70(2.8)	13.90 ~ 16.65(2.75)	2.675	2.676	47.20	47.80	1.743	1.730	1.259	1.285	砂混り粘土	砂混り粘土
As2	シルト混じり砂	16.70 ~ 19.85 (3.15)	16.65 ~ 19.70(3.05)										
Ac3	粘土	19.85 ~ 22.50(2.65)	19.70 ~ 22.50(2.80)										

表-3(b) 室内土質試験結果(その2)

表-3(c) 室内土質試験結果

		深度(m) ()数字は層厚	塑性	指数	コンシステン	ルシ-指数	一軸強度	₹(kN/m2)	王密降伏応	5力(kN/m2	圧縮	指数
土層区分	土質区分	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外	No1杭間	No2杭外
Ac1	砂	0.00 ~ 1.80(1.80)	0.00 ~ 1.75(1.75)										
AST	シルト混じり砂	1.80 ~ 3.00(1.2)	1.75 ~ 2.90(1.15)										
	シルト	3.00 ~ 6.00(3.0)	2.90 ~ 5.90(3.0)	38.9	29.0	0.53	0.42	157.0	122.0	167.0	134.0	0.51	0.54
Ac2	粘土	6.00 ~ 13.90(7.9)	5.90 ~ 13.90(8.0)	66.2	34.3	0.48	0.42	131.9	123.8	139.0	139.0	0.84	1.05
	砂混じり粘土	13.90 ~ 16.70(2.8)	13.90 ~ 16.65(2.75)	39.9	22.3	0.45	0.36	289.6	216.6	309.0	242.0	0.75	0.65
As2	シルト混じり砂	16.70 ~ 19.85 (3.15)	16.65 ~ 19.70(3.05)										
Ac3	粘土	19.85 ~ 22.50 (2.65)	19.70 ~ 22.50(2.80)										

自然含水比(Wn)

図-18 室内土質試験結果深度分布図

圧密降状応力(Pc)

H15 N01

H15 No2

(2) 木杭の材質調査

引き抜いた木杭の外観は健全であり,杭の寸法は 概ね設計図面に示されている寸法(長さ約15m,頭 部直径 30~35cm,末口直径 20~25cm)であった. 表-4 に観察した木杭の諸元を示す。切り出した木杭 の代表的な断面は既に写真-1に示した.また,写真 -2 に現地での杭の状況を示す.これらを観察した結 果,特に腐食は見られなかった.

表-4 木杭の諸元(概要)

プロック	No	枯E(m)	杭径	(cm)	安内試驗	載芬試驗
7197	INU	机茂(111)	頭部	先端3m	王山山兴	毕发19 市场词失
٨	8	15.12	38	24		肖枯_1
~	10	15.24	31	25		キ 111-1
	22	15.20	32	25		
Р	23	15.31	31	26		肖枯-2
D	24	14.91	33	25		千 11-5
	28	15.08	35	25		
	36	14.92	32	26		
c	37	15.31	31	24		₩枯_1
C	39	15.05	34	26		11+171-1
	40	14.80	33	25		
D	48	15.13	33	26		単杭-2
D	51	15.16	30	23		水平-1

表-5 には木杭の材質試験結果を示す.これによると,密度は,湿潤状態(現状)で,0.7~1.13g/cm³の範囲に推移し,辺部が心部に比べてやや大きい.含水率は,85.6~163.2%に推移している.圧縮強度は,心部が平均17.0~24.5N/mm²であり,辺部が26.6~40.2N/mm²に推移している.全体的な木杭の圧縮強度は一部,突出している 値を省くと17.0~30N/mm²に推移すると判断される.

Et e l'Iter I J J Chevistinner	表-5	木杭の材質試験	能制	R
--------------------------------	-----	---------	----	---

	枯来早	1		鈨	年龄	家庄	圧縮強度	(N/mm2)	弾性係数(ダイヤ)	レケ'ーシ')(N/mm2)
	机雷马	Ĩ	径	周長	牛辋	省反	心	辺	心	辺
		F	29.0	93.4						
/	A No.10		26.5 85.5 92		0.76 ~ 1.12	14.2 ~ 21.1	29.1 ~ 32.7	2040 ~ 1510	5150 ~ 6870	
			24.0	77.5		(0.94)	(17.65)	(30.9)	(1775)	(6010)
		F	33.0	102.5						
E	8 No.28	中	31.0	97.0	109	0.83 ~ 1.01	13.6~20.4	18.4 ~ 34.8	2560 ~ 3990	3270 ~ 7250
		下	29.0	92.7		(0.92)	(17.0)	(26.6)	(3275)	(5260)
		F	29.5	91.7						
(No.37	中	27.0	88.0	104	0.73 ~ 1.13	14.2 ~ 34.9	20.2 ~ 28.1	2390 ~ 5380	4770 ~ 5970
		下	26.0	82.5		(0.93)	(24.55)	(24.15)	(3885)	(5370)
		F	31.5	99.5						
[No.48	中	30.0	97.5	104	0.90 ~ 0.97	16.9~26.4	29.7 ~ 50.8	3270 ~ 3580	5290 ~ 8180
			28.0	87.5		(0.935)	(21.65)	(40.25)	(3425)	(6735)

表-6 新規荷重段階の最終変位量一覧

単杭 - 2

0.455

1.113

1.948

2.940

4.223

5.963

(40.903) 2)

最終変位量 (mm)

写真-2 杭頭の露出状況

単杭 - 3

0.573

1.385

2.463

3.803

5.738

8.693

(42.167)

群杭

0.260

0.485

0.728

0.995

1.300

1.618

2.045

2.433

(3) 木杭の鉛直載荷試験

a) 試験結果概要

鉛直載荷試験結果からは,以下の鉛直支持力特 性に関する資料が得られた.

荷重 - 変位量曲線

第1限界抵抗力

- 第2限界抵抗力
- 杭頭の鉛直ばね定数

試験結果総合図を図-19 に,各試験の新規荷重 段階の最終変位量を表-6 にそれぞれ示す.最終変 位量は,杭頭上に設置した4個の変位計の平均値を 用いた.なお,それぞれの鉛直載荷試験は以下のよう な状況を確認して終了とした.

備考

荷 重 (kN)

100

200

300

400

500

600

700

800

1) 800kN荷重保持時間8分30秒の変位量

単杭 - 1

0.418

1.010

1.778

2.715

3,933

5.433

8.550

(41.390)

700kN荷重保持時間12分30秒の変位量
 700kN荷重保持時間8分30秒の変位量

3) 700KN何里休持時间8万30秒
 4) - :データなし

n) = . 7 7 au

·単杭鉛直載荷試験

単杭-1:800(kN)の荷重保持段階内で変位量が 0.1D(D: 杭頭直径, 0.1D=35mm) 以上となった.

単杭-2:700(kN)の荷重保持の段階で変位量が 0.1D 以上となった。

単杭-3:700(kN)の荷重保持の段階で変位量が 0.1D 以上となった.

·群杭鉛直載荷試験

群 杭∶最大荷重 800(kN)が保持できることを確認した.

	-	-		_	-100	0 50													1000	-5				
	荷重 -	時間曲約	ġ.		80	40	0	荷重 - 残留変位量 荷重 - 弾性戻り量	計算 単の単の単の単の単の単の単の単の単の単の単の単の単の単の単の単の単の単の単の					7	苛重 -	時間曲	線			4		: 荷重 - 残留変 : 荷重 - 弾性戻	位量曲線 り量曲線	
					ŝ_m	20			İ										<u>2</u>	E				
		h) 1 1 1 1 1 1 1							ł		ł		h			₩ ₩	.) = 7				
	}				-1	200						1						5	-1¢ 400	·2 叙				
	{			Ţ		1	·		-0			1		17				ΙŢ	-200	.1	• •			•
60 350 360 時間(min.)	250 2	\$	i04	۹ ۱	, <u> </u>	0	0 4	00 600	8	00 11 荷重 (kN)	dD0 4	00 3 時間	50 3 (min.)	ľЛ	250 2		50 1				00 4	00 60	0 8	00 10 荷重(kN)
					10 E							1		/	C	1			1		<u> </u>	//:		
					- <u>E</u> 2								\sum						- <u>E</u> 2					
-					₩ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1														遼 -包3					
	変位量 -	時間由	白線		4		 荷												4					
					-51	,					1			3	2位量・	時間日	日緑		5		何	里 · 変位量	田線	

図-19(c) 単杭鉛直載荷試験(単杭 - 3)

図-19(d) 群杭鉛直載荷試験(群杭 - 1)

b) 第1限界抵抗力

鉛直基準では、「第1限界抵抗力は、log P - log S 曲線に現れる明瞭な折れ線の荷重をいい、S - log t 法, S/ log t - P 法,残留変位量の急増点などを総合して判定する.ここに、P:荷重、S:杭頭変位量、t:新規荷重段階に おける経過時間である」と規定している.

第1限界抵抗力の定義は次のように考えられている.第1限界抵抗力は,降伏荷重といわれて,その発生要因は 杭材・摩擦抵抗・先端抵抗のいずれかの降伏点到達によるものと考えられている.また,打込み杭の施工時には,杭 は地盤を破壊しながら貫入されて,地盤は先行荷重を受けている.載荷試験により再載荷されて,地盤に与える荷重 が先行荷重を超えることによって折れ点荷重が顕著に現れると考えられている.よって,周面抵抗力の降伏と先端支 持力の降伏とほぼ同時に発生し,第1限界抵抗力にほぼ一致すると考えられている.ここでの降伏は荷重増分に対 する変位量増分が急増する点のことである.

第1限界抵抗力の判定は,鉛直基準にしたがい,以下に示す手法を用いて行った.

·log P - log S 法

各新規荷重段階 P における荷重保持時間の 30 分後の最終変位量 S を, log P - log S 曲線でプロットして, 折れ点を求める。

·S - log t 法

各新規荷重段階 P における荷重保持時間中の経過時間 t とそのときの変位量 S を , S - log t 曲線で表し,

S - log t 関係の直線性が失われる荷重を求める.

• S/ log t - P 法

上記 S - log t の傾きつまり, 全曲線を通じて log t を一定にとった割線勾配である S/ log t と荷重 P を
 S/ log t - P 曲線で表し, S/ log t が急増する点を求める.

·残留変位量法

除荷時の残留変位量 S と荷重 P をプロットして,残留変位量が急激に増加する荷重を求める.第1限界抵抗力 を過ぎるとこの傾向が明確になり,有効な判定指標の一つになる.

各判定手法で行った判定結果を表-7 に示す.また, log P - log S 曲線, S - log t 曲線, S/ log t - P 曲線に ついて図-20 に単杭-1,単杭-2,単杭-3 の各杭毎にそれぞれ示す.今回,残留変位量法ではデータが少なく判定 はできなかった.

		第1限界抵抗力 (kN)										
判定方法 試験名	IogP-IogS曲線	S-logt法	S/ logt-P法	残留変位量法								
単杭 - 1	506	400	577	-								
単杭 - 2	389	400	476	-								
単杭 - 3	388	400	468	-								
群杭	-	-	-	-								

表-7 第1限界抵抗力の判定結果

(備考) - : 判定不可能

🧭 株式会社ピーエス三菱 技報 第2号 (2004年)

図-20 各杭の第1限界抵抗力の判定

c) 第2限界抵抗力

鉛直基準では、「第2限界抵抗力は、押込み抵抗が最大 となったときの荷重とする.ただし、先端変位量が先端直径の 10%以下の範囲とする」と規定している.

第2限界抵抗力は,極限荷重と同義であり,10%の変位量 は,諸機関で規定されている支持力の基準になっている条件 である.実際の試験では,極限荷重に達するまで載荷されたこ とは少なく,杭の変位量によって第2限界抵抗力を判定して いる.本試験でもこの判定法を採用して,試験終了の目安は, 杭径の10%以上の変位量を確認することとした.なお,本試験 の変位量測定は杭頭のみであるので,第2限界抵抗力の判定 には杭頭変位量を用いて行った.

また,鉛直基準では,第2限界抵抗力を荷重-変位量曲線 において図-21のような2とおりの挙動を取り上げている.A曲

(杭頭荷重-先端変位量曲線の挙動例)

線は,極限状態が明確に現れずに荷重が載荷できるような一般的な曲線で あり,荷重の判定が難しく,この場合の第2限界抵抗力は0.1D(図中のP0.1D) の時の荷重になる.一方,B曲線は,明確なピーク荷重が現れてその後所定 の荷重の載荷ができなくなるような曲線であり,この場合の第2限界抵抗力は 0.1D 到達時の荷重よりもピーク荷重(図中のPmax)が妥当であるとしている.

荷重 - 変位量曲線を図-22 に示す.図-22 に示されるように単杭鉛直載 荷試験3箇所で,新規荷重保持時間内で0.1D以上の変位量が確認された. 今回の単杭鉛直載荷試験の荷重 - 変位量曲線は,試験中における新規荷重

保持時間内での変位量の急激な増加や荷重保持中の荷重維持状況(荷重推移,ポンプ操作)から判断すると,図 -21におけるB曲線と同様な傾向を示すと判断できる.よって第2限界抵抗力は,変位量が0.1D以下のデータの中 で最大となった荷重とした.その結果を表-8に示す.

d) 群杭鉛直載荷試験の第1限界抵抗力および第2限界抵抗力について

群杭鉛直載荷試験結果として, log P - log S 曲線を図-23(a)に,荷重 - 変位量曲線を図-23(b)にそれぞれ示す. 4本の木杭を用いた群杭鉛直載荷試験は,単杭鉛直載荷試験と同様な載荷パターンで,最大荷重は 800kN である.単純に考えると,杭1本あたりには最大で平均 200kN の載荷であり,単杭の第1 限界抵抗力にも到達していない.一方,一般に群杭の極限支持力は単杭の極限支持力の杭本数倍となる.よって,本試験での群杭の第1 限界抵抗力の判定は不可能である.

第2限界抵抗力は,鉛直基準を満たす荷重は確認されなかったので,判定はできなかった.また,単杭の4倍の極限支持力と想定すると,2,800kN以上の値となり,反力装置の施工上から試験実施は不可能である.

よって,前出した表-6および表-7中の群杭の項目に関しては,すべて判定不可能となっている.

🧭 株式会社ピーエス三菱 枝報 第2号 (2004年)

	第2限界抵抗力 (kN)
単杭 - 1	800
単杭 - 2	700
単杭 - 3	700
群杭	-

(備考)- :第2限界抵抗力が見られない

e) 鉛直ばね定数について

鉛直基準に基づき,新規荷重に対する杭頭の鉛直ばね定数 Kv を,図-24 に示すように原点と荷重 - 変位量曲線上の所定の点とを結ぶ割線勾配から 算出した.また,繰返し荷重に対する繰返し鉛直ばね定数 Kvr は,繰返し0荷 重時の残留変位量 Sr と荷重 - 変位量曲線の所定の点とを結ぶ割線勾配から 算出した.両定数算出には,各新規荷重段階の最終保持点を用いた.

鉛直ばね定数および繰返し鉛直ばね定数の算出結果を表-9,表-10にそ れぞれ示す.また,鉛直ばね定数と変位量の関係を図-25 に示す.仮に変 位量が 10mm になったときの鉛直ばね定数を求めると, 単杭 - 1 は 80kN/mm, 単杭 - 2 は 73kN/mm , 単杭 - 3 は 66kN/mm となり, 単杭 - 1 が他の箇所よ も大きな値であることがわかる.また,群杭では131kN/mmとなる.

表-9 鉛直ばね定数の算出結果

4

6

変位量 S (mm)

(単杭鉛直載荷試験:単杭-1)

10

=33+587/(S+2.5)

=24+545/(S+3.1)

2

4

変位量 (mm)

450

400

350

300

250

200 150

100

50

500

450

400

350

300

200

150

100

50

Kv (kN/mm

鉛直ばね定数 250

(kN/mm)

鉛直ばね定数 Kv

鉛直ばね定数 - 繰り返し鉛直ばね定数 - 近似曲線

(b)繰返し荷重鉛直ばね定数 (Kvr) 図-24 鉛直ばね定数の算出方法

表-10 繰返し鉛直ばね定数の算出結果

荷重	繰り返し鉛直ばね定数 Kvr (kN/mm)									
(kN)	単杭 - 1	単杭 - 3	3 群杭							
200	232	216	169	440						
400	182	177	131	457						
600	143	146	103	445						
800 412										

f) 単杭と群杭の鉛直ばね定数の比較

単杭および群杭の鉛直ばね定数と載荷荷重の関係を図-26 に示す.単杭の鉛直ばね定数は3箇所の平均を用いた.群杭 の初期(載荷荷重100kN)の鉛直ばね定数が低下しているが, これは木杭と載荷台が十分になじんでいないことが要因となって いると考えられる.

前述したように群杭では,第1および第2限界支持力は明確 ではなく,同一荷重レベルでの単杭と比較は難しい.そこで,荷 重レベルの統一を行い,表-11および図-27のような検討を行った.

3 箇所の単杭鉛直載荷試験の鉛直ばね定数を平均して単杭の 指標とし,載荷荷重を1/4とした時の群杭鉛直載荷試験の鉛直ば ね定数を群杭の指標として表-11のようにまとめた.図-27をみると, 単杭の鉛直ばね定数を2倍にした場合の分布状況と,群杭の分布 状況がほぼ同じ傾向を示している.

検討の結果,鉛直ばね定数から判断した場合,低い荷重領域で はあるが,杭4本の群杭の鉛直ばね定数は,単杭の鉛直ばね定数 の2倍になると考えられる.

12	-II ¥	미묘미		X KV U	ノ(火口))		
単	杭	群	杭	検討			
荷重 単杭		荷重	群杭	荷重	単杭	群杭	単杭×2
(kN)	(kN/mm)	(kN)	(kN/mm)	(kN)	(kN/mm)	(kN/mm)	(kN/mm)
100	211	100	385	25		385	
200	174	200	412	50		412	
300	148	300	412	75		412	
400	130	400	402	100	211	402	422
500	111	500	385	125		385	
600	93	600	371	150		371	
700		700	342	175		342	
800		800	329	200	174	329	348
				300	148		296
				400	130		259
				500	111		222
				600	93		187

表-11 鉛直ばね定数 kv の検討結果

직~20 如且1414足奴 的主田称

図-27 鉛直ばね定数の検討結果

g) 鉛直載荷試験結果のまとめ

鉛直載荷試験の鉛直支持力特性を,表-12に示す.

第1限界支持力は,各算出手法の結果を総合的に判定して,logP - logS曲線から算出された荷重を採用した.第2 限界抵抗力は,変位量が0.1Dを超えた新規荷重段階の荷重を採用した.

単杭鉛直載荷試験の鉛直ばね定数は,第1限界抵抗力が出現する前の荷重ステップである 300kN 時の値を採用した. 群杭鉛直載荷試験での鉛直ばね定数は,最小の値である最大荷重 800kN 時の値を採用した.

試験名	第1限界抵抗力	第2限界抵抗力	鉛直ばね定数 Kv
	(k N)	(kN)	(適用荷重 (kN))
単杭 - 1	506	800	169(300)
単杭 - 2	389	700	154(300)
単杭 - 3	388	700	122(300)
群杭	-	-	329(800)

表-12 鉛直載荷試験の鉛直支持力特性

図-28 試験杭および反力杭の荷重と 水平変位量の方向

表-13 新規載荷荷重段階での最終変位量

載荷荷重 (kN)		最終変位量	載荷荷重 (kN)		最終変位量
正荷重	負荷重	(mm)	正荷重	正荷重 負荷重	
0		0.000	0		-1.480
15		1.125	75		13.835
30		3.095	90		17.925
	0	0.435		0	3.270
	-15	-1.210		-75	-12.570
	-30	-3.120		-90	-16.690
0		-0.550	0		-3.200
45		5.965	105		23.155
60		9.360	120		27.330
	0	1.560		0	5.380
	-45	-5.565		- 105	-22.175
	-60	-8.530		- 120	-27.175
			0		-5.515

図-29 荷重 - 時間曲線

(4) 木杭の水平交番載荷試験

a) 試験結果

水平載荷試験結果から,以下のような水平抵抗特性が求まる.

·荷重 - 時間曲線

 ・結果総合図(荷重 - 変位量曲線,荷重 弾性戻り量曲線, 荷重 - 残留変位量曲線)

·荷重 变位量曲線(log - log 表示)

·荷重 - 杭頭傾斜角曲線

水平載荷試験の目的は,杭基礎の設計に必要な杭の水平抵抗に 関する物性値を得ることである.本試験は木杭の物性値の把握が 目的であるので,杭の水平抵抗に関する特性のうち,水平地盤反 力係数,水平ばね定数,および減衰定数の算出を行った.

試験における荷重と変位量の方向を図-28に示す.

荷重 - 時間曲線を図-29 に,試験結果総合図を図-30 に,各新規 荷重段階の最終変位量を表-13 にそれぞれ示す.変位量は,載荷点 に設置した2個の変位計の平均値を用いた(および 変位計,前記 図-15 参照),荷重の方向は前記図-29 に示すように,+表示の荷

重が「上流 下流」方向(正荷重)、-表示の荷重が「 下流 上流」方向(負荷重)である.変位量の方向は 前記図-28 に示すように,+方向の変位量が「上流 下流」方向(正荷重載荷時の変位量,+表示)、-方向 の変位量が「下流 上流」方向(負荷重載荷時の変位 量,-表示)である。試験は,最大荷重 120kN が保持 できることを確認した.鉛直載荷試験の第1 限界抵抗 力の判定法を用いて,降伏荷重を求めた.正荷重およ び負荷重での降伏荷重は,荷重保持が短時間(3分間) のため,明瞭な結果が得られなかった.降伏荷重の判定 を図-31 および図-32 にそれぞれ示す.荷重 - 杭頭傾 斜角関係図を図-33 に示す.傾斜角は,載荷点で測定 した変位量と,載荷点から 20cm 上方で測定した変位量 から算出した(前記図-15 参照).また,杭の挙動図を 図-34 に示す.

18 / 32

0.015

降伏荷重の判定(正荷重載荷時:logP - logS 曲線法)

降伏荷重の判定(正荷重載荷時:S-logt法)

降伏荷重の判定(正荷重載荷時: S/ logt-P法)

図-30 降伏荷重の判定(正荷重載荷時)

b) 水平地盤反力係数について

水平地盤反力係数 k は,基礎の変位や地盤反力を得るために必要な設計上の基本的な定数であり,単位面積あ たりの荷重を変位量で割った値で定義される.また,水平地盤反力係数は,地盤の変形特性,地盤物性値の深度方 向の変化,試験方法の相違などの色々な要因に影響を受ける複雑な性質を持つ定数である.

水平地盤反力係数の算出には,種々の方法が提案されているが,ここでは変位量および傾斜角を用いて水平地 盤反力係数が深さと無関係に一様とした理論解であり,最も簡便な Chang の方法を適用した.水平地盤反力係数 k の算出は,この Chang の方法から計算式から求める方法と実測値から求める方法を用いた.今回は実測値として水 平変位量と傾斜角を用いて,水平地盤反力係数を求めた.なお,算出には杭の状態を杭頭自由として行った.

以下に,各計算式に用いられる係数を示す.なお,杭の弾性係数(E)は,木杭材質試験(室内試験)のうち湿潤状態で行った縦圧縮試験のダイヤルゲージ測定による静弾性係数の平均値を用いた.

: 杭の特性値 (m ⁻¹)	E : 杭の弾性係数(MN/m²) (=3,590 MN/m²)
k : 水平地盤反力係数 (MN/m³)	Ⅰ : 杭の断面二次モーメント (m⁻⁴)
D:杭径 (m) (=0.355m)	杭を円形と仮定して, I = D4/64 (m-4) = 0.00147 (m-4)

降伏荷重の判定(負荷重載荷時:logP-logS曲線法)

降伏荷重の判定(負荷重載荷時:S-logt法)

降伏荷重の判定(負荷重載荷時: S/ logt-P法)

図-31 降伏荷重の判定(負荷重載荷時)

y : 水平変位量 (m)

h : 載荷点の高さ (m) (=0.2m)

P:載荷荷重 (MN)

: 傾斜角 (rad)

・水平変位量を用いた場合(計算式からの算出)

Changの方法による杭頭水平変位量の計算式は 式で表される.

$$\beta = 4\sqrt{\frac{kD}{4EI}} \qquad \dots \qquad \dots$$
$$y = \frac{(1+\beta h)^3 + \frac{1}{2}}{3EI\beta^3} \times P \qquad \dots \dots$$

式から k を推定する場合には, k に任意の数値を代入して を求め, その を 式に代入して y と P の関 係を算出する.ここで k は, 10,20,40,60,80,100,120MN/m³とした.これから算出された y と P の関係を実測 水平変位量 - 荷重関係図にプロットする.

・水平変位量を用いた場合(実測値からの算出)

式に,実測した Pとy(新規載荷荷重とそのときの最終変位量)を代入して, を求める.そ

のを式に代入してkを求める.この実測値から求めたkとPの関係をプロットする.

・傾斜角を用いた場合(計算式からの算出)

Chang の方法による杭頭傾斜角の計算式は 式で表される.

 $\alpha = \frac{\left(1 + \beta h\right)^2}{2EI\beta^2} \times P$

式からkを推定する場合には,kに任意の数値を代入してを求め,そのを式に代入してとPの関係を算出する.ここでkは,10,20,40,60,80,100,120MN/m³とした.これから算出されたとPの関係を実測傾斜角 - 荷重関係図にプロットする.

・傾斜角を用いた場合(実測値からの算出)

式に,実測した P と (新規載荷荷重とそのときの最終変位量)を代入して, を求める.その を 式に 代入して k を求める.この実測値から求めた k と P の関係をプロットする.

・水平地盤反力係数の検討結果

計算式を用いた上記(1)の検討結果を図-35 に示す.この図より水平地盤反力係数 k は 20~160MN/m³ に 分布している.同様に上記(3)の検討結果を図-36 に示す.この図より水平地盤反力係数 k は 150~ 500MN/m³に分布している.また,上記(2)および(4)の検討結果を図-37 および表-14 にそれぞれ示す.この図 を見ると,傾斜角から求めた水平地盤反力係数 k にバラツキが見られるが,全体的にはほぼ同じような傾向が 見られる.

c) 減衰定数および水平ばね定数

水平交番載荷試験では,杭~地盤系を一質点系 にモデル化した場合の減衰定数と水平ばね定数が得 られる.減衰定数と水平ばね定数は,図-38に示す ように荷重と水平変位量で描かれる復元力特性曲線か ら求めることができる.

図-30 で示した試験結果から算出した減衰定数を 表-15 に示す.減衰定数は,百分率で表す減衰率と した.その減衰率 - 荷重および水平変位量関係図を 図-39 に示す.

図-30 で示した試験結果から算出した水平ばね定数を表-16 に示す.水平ばね定数は正荷重載荷時と 負荷重載荷時で算出した.その水平ばね定数 - 荷重 および水平変位量関係図を図-40 に示す.

表-14 実測値から算出される水平地盤反力係数一覧

	杭頭水平変位量(実測値)から逆算した場合										
荷 重		正荷重載	苘	負荷重載荷							
	水平変位量	杭の特性値	地盤反力係数	水平变位量	杭の特性値	地盤反力係数					
(kN)	y (mm)	(m ⁻¹)	k (MN/m ³)	y (mm)	(m ⁻¹)	k (MN/m ³)					
15	1.125	1.249	153.3	1.210	1.213	136.6					
30	3.095	1.102	92.9	3.120	1.098	91.8					
45	5.965	1.000	63.2	5.565	1.027	70.3					
60	9.360	0.940	49.3	8.530	0.974	56.8					
75	13.855	0.882	38.2	12.570	0.915	44.2					
90	17.925	0.857	34.1	16.690	0.881	37.9					
105	23.155	0.825	29.3	22.175	0.839	31.2					
120	27.330	0.815	27.9	27.175	0.817	28.1					

	傾斜角(実測値)から逆算した場合										
古 重		正荷重載	荷	負荷重載荷							
19 里	傾斜角	杭の特性値	地盤反力係数	傾斜角	杭の特性値	地盤反力係数					
(kN)	(×10 ⁻⁴ rad)	(m ⁻¹)	k (MN/m ³)	(×10 ⁻⁴ rad)	(m ⁻¹)	k (MN/m ³)					
15	9	1.614	428.0	10	1.487	308.3					
30	20	1.526	342.2	21	1.459	286.0					
45	30	1.493	313.6	35	1.374	224.8					
60	37	1.579	392.5	48	1.336	201.1					
75	49	1.534	349.6	66	1.257	157.4					
90	57	1.550	364.4	74	1.315	188.3					
105	90	1.279	168.9	85	1.334	199.6					
120	107	1.254	156.1	98	1.324	193.9					

・杭の弾性係数は材質試験のうち縦圧縮試験結果(ダイヤルゲージ、湿潤状態)を適用した。

表-15 減衰定数一覧表 表-16 水平ばね定数一覧表

繰返し荷重 (kN)	W (kN・mm)	W (kN・mm)	減衰率 (%)
30	35	46	6.0
60	292	281	8.3
90	906	807	8.9
120	1881	1640	9.1
	•		

繰返し荷重	水平ばね定数 Kh (kN/mm)				
(KN)	正荷重時	負荷重時			
30	9.7	9.6			
60	6.4	7.0			
90	5.0	5.4			
120	4.4	4.4			

図-38 減衰定数と水平ばね定数の求め方

d) 水平交番載荷試験結果のまとめ

水平変位量に実測値を用いて水平地盤反力係数を求めた場合(図-35)では,荷重 20~120kN の範囲で 20~ 160MN/m³となり,理論式を用いて水平地盤反力係数を求めた場合(図-37)と近似する.また,傾斜角に実測値を用 いて水平地盤反力係数を求めた場合(図-36)でも,荷重 20~120kN の範囲で 150~500MN/m³となり,理論式を 用いて水平地盤反力係数を求めた場合(図-37)と近似する.Chang の式に水平変位量および傾斜角を代入して検 討すると,両パラメータともに理論式と実測値で整合性があり,実測値の信頼性は高いと判断できる.また,詳細に前 記図-37 をみると,水平変位量から求めた水平地盤反力係数は一定の相関があるのに対して,傾斜角から求めた水 平地盤反力係数は荷重 100~400kN の領域でのバラツキが多い.これらのことより,実測水平変位量から求められる 水平地盤反力係数が妥当であることが評価できる.

よって,水平地盤反力係数kは,実測水平変位量から算出した結果を用いると,荷重Pとの関係から次式で表すことができる.算出結果を図-40に示す.

$$k = -3.4 + \frac{4007}{(P+12.0)}$$

減衰定数は,荷重または水平変位量が大きくなるに従い,その減衰率hも増加する傾向となった.最大繰返し荷重である120(kN)では,最小繰返し荷重である30(kN)の時の約1.5倍となった.

減衰定数(減衰率)hと荷重 Pの関係は、次式で表すことができる.

 $h = 2.4 \times P^{0.29}$

水平ばね定数は,正荷重載荷と負荷重載荷を比較するとほぼ同じ値となり,載荷方向に関係がないことがわかった. 水平ばね定数 Kh と荷重 P の関係は,次式で表すことができる.

荷 重 P(kN) 図-41 水平変位量から算出した水平地盤反力係数

5. まとめおよび木杭の特性に関する一考察

(1) 地盤調査結果と鉛直載荷試験からの妥当性の評価

詳細は前段で述べたが,ボーリング調査で得られた地盤の諸係数と,今回の架替工事で撤去された木杭から求まった諸元を用いて周面抵抗力を算出して,載荷試験結果の妥当性について検討した.

杭効果比は,杭間と杭外で行われたボーリング調査から得られた孔内水平載荷試験結果(地盤係数,降伏圧)と土質 試験結果(一軸圧縮強さ,圧密降伏応力)の各係数での杭間/杭外とした.これらの結果を表-17 に示す.すべての係 数で杭効果比は 1.0 以上となり,木杭によって地盤が締め固められていると判断できる.

調査項目	試験項目			試料番号	深度	杭間	杭外	杭効果比 (杭間/杭外)
				T-1	4.00 ~ 4.80	157.0	122.0	1.3
	一軸圧縮強さ	qu	kN/m²	T-2	9.00 ~ 9.80	131.9	123.8	1.1
十哲試驗				T-3	14.50 ~ 15.30	289.6	216.6	1.3
上貝叫歌		рс	kN/m²	T-1	4.00 ~ 4.80	167.0	134.0	1.2
	圧密降伏応力			T-2	9.00 ~ 9.80	139.0	139.0	1.0
				T-3	14.50 ~ 15.30	309.0	242.0	1.3
刘 贞水亚載荷試驗	降伏圧	Py	kN/m ²	-	-	132.33	82.25	1.6
」してコントー「単化1円 市以词矢	地盤係数	Km	kN/m ²	-	-	45.099	39.297	1.1

表-17 各試験結果と杭効果比

次に,一軸圧縮試験結果から周面抵抗力を算出して,鉛直載荷試験から得られた第2限界抵抗力との比較・検討 を行った.

一般に,粘性土層の粘着力は,内部摩擦角が小さいことから一軸圧縮強さ(qu)の半分の値と同等と考えられる. ここでは,木杭が設置してある地盤において =0 および c=qu/2 が成立すると仮定して,一軸圧縮強さから求まる粘 着力を用いて周面抵抗力を算出した.その結果と木杭の諸元をまとめて表-18 示す.

		<u> </u>	杭効果比 (杭間/杭 外)	一軸圧縮強 さ(kN/m2)	粘着力 (kN/m2)	杭長 (m)	杭頭部直径 (m)	杭先端部直径 (m)	周面抵抗力 (kN)
	計画段階度行	`='_ <i>¤</i>	-	-	44.1	15.0	0.35	0.20	573.3
	히멛왡몀ᇞ	E) -9	-	-	44.1	15.1	0.33	0.25	608.6
		T-1	-	122.0	61.0	15.1	0.33	0.25	839.2
	杭外側データ	T-2	-	123.8	61.9	15.1	0.33	0.25	851.6
		T-3	-	216.6	108.3	15.1	0.33	0.25	1489.9
		T-1	1.3	157.0	78.5	15.1	0.33	0.25	1083.3
杭内	杭内側データ	T-2	1.1	131.9	66.0	15.1	0.33	0.25	910.8
		T-3	1.3	289.6	144.8	15.1	0.33	0.25	1998.2

表-18 周面抵抗力の算出結果

杭間データの試験結果から得られた周面抵抗力と鉛直載荷試験から得られた第2限界抵抗力を比較する.なお, 杭間データのうちハッチングされている については,杭先端付近データであることから考慮せず, および のデ ータで検討した.鉛直載荷試験で得られた第2限界抵抗力は前出した表-9.1 に示すように 700~800(kN)であり,平 均すると約730(kN)となる.

一方,一軸圧縮強さから得られる周面抵抗力は約 1000(kN)となり,今回調査の一軸圧縮強さから得られた周面 抵抗力と載荷試験による第2限界抵抗力(平均値:730(kN))を比較すると,第2限界抵抗力のほうが周面抵抗力より 小さい.第2限界抵抗力から算出した周面抵抗力より小さくなった要因としては,木杭 - 地盤間の摩擦力が影響して いると考えられる.一軸圧縮強さから得られる周面抵抗力は地盤内のせん断強度であり,そのせん断強度よりも木杭 - 地盤間の摩擦力が小さいためと想定できる.また,引き抜いた後の木杭の観察では,木杭表皮は剥がされていて, 木杭周面には凹凸がなく土の付着もなかったことからも,木杭と地盤の間の摩擦力は,地盤のせん断強度よりも小さ いと判断される. 今回の調査結果から得られた,周面抵抗力(910.8~1083.3kN)は後述する杭基礎の検討で採用する値であるが, 安全率(1/3~1/4)として,許容押込力はそれぞれ(303~361kN),(227~270kN)となり,土質調査から推定される 許容押し込み力より,鉛直載荷試験で得られる第1限界抵抗力(388~506kN)の方が大きいことから,今回の鉛直載 荷試験で得られた杭の支持力は妥当と判断される.

(2) 木杭の材質調査結果

a) 木杭の耐久性について

前段で述べたように,木杭の密度は,湿潤状態(現状)で,0.7~1.13g/cm³の範囲し,辺部が心部に比べてやや大きい.含水率は,85.6~163.2%に推移する.圧縮強度は,心部が平均 17.0~24.5N/mm² であり,辺部が 26.6~40.2N/mm²に推移する.全体的な木杭の圧縮強度は,概ね 17.0~40N/mm²である.長期許容応力度は,これら材料強度の 1/3 であると考えると表-19 の一般的な木材の許容圧縮応力度を概ね上回っている.このことから,春日出橋において打設後70年経った現在でも,その強度は維持されていると判断される.

表-19 木材の許容応力度 「構造計算指針・同解説 日本建築センター 1988 年版」

種類	許容応力度	長期応 単位 リ	力に対す 1平方	する許容 iセンチン キログラ	応力度 <ート ハ	短期応力に対する許容応力度 単位 1平方センチメート ルにつきキログラム		
1275		<u></u> 圧縮	引張り	曲げ	せん断			
	あかまつ , 〈ろま つ及びべいまつ	75	60	95	8			
針	からまつ,ひば, ひのき及びべい	70	55	90	7			
葉	つが及びべいつか	65	50	85	7	長期応力に対する圧縮、引張		
樹	もみ , えぞまつ , とどまつ , べにま つ , すぎ , べいす ぎ及びスプルース	60	45	75	6	り、曲げ又はせん断の許容応 力度のそれぞれの数値の2倍 とする。		
広	かし	90	80	130	14			
葉 樹	<り,なら,ぶな, 及びけやき	70	60	100	10			
2 かた木で特に品質良品なものをしやち、込み栓の類に使用する場合においては、その許容応								

b) 既存調查事例

「大正12年(1923年)に竣工した丸の内ビル(旧丸ビル)」⁴では,確認された松杭(米松)について,30本引き抜いた杭の内,無作為に5本取り出し,観察した結果,杭の腐食はほとんど見られず健全であったことが報告されている. 詳細は文献にゆずるが,ここでは,代表的な杭で,室内圧縮強度試験が実施されており,気乾状態で27.0MPa,湿潤状態で16.9MPaである.日本建築学会の建築基礎構造設計基準では,米松の長期許容圧縮強度を4.9MPaとしており,長期許容応力度は材料強度の1/3であると考えると,松杭は十分な材料強度を有しており,70年以上経過しても,腐朽することなくなお健全であったと判断される.

「昭和12年(1937年)に竣工した国鉄本庁舎の基礎工事」。のは、木杭の腐朽について詳細に検討されている.

木材の強度は同一樹種であっても,産地によって,また同一産地にあっても,生育箇所により,その材料の強度は 異なる.また,同一樹木よりサンプリングした試験供試体でも,その位置により異なると考えられる.したがって,これら 天然材を比較することは困難であるが,米松材の圧縮強度については,56.8MPaと報告されている.実際は,これの ±30%前後の範囲内に分布している.いずれにしろ,先に紹介した文献4)の値に比して大きな値となっている.

一般に,木杭の老朽の最大の原因は腐朽菌によるもので,繁殖条件によっては,僅か一ヶ月にしてその木材は腐敗してしまう.ここでは,この腐朽菌に着目して分析も行われているが,腐朽菌の存在は認められず,木杭の老朽はないものと判定されている(詳細は文献を参照).

以上,過去70年~80年前に打設された木杭について,既往の文献を紹介したが,両者の共通点は,地下水面以下に存在し,現在まで,地下水位の低下に伴って大気に触れる環境ではなかったことや,地盤は飽和状態にあり,外部からの腐朽菌の侵入及び成育はほとんど不可能であったものと判断される.

今回調査した春日出橋おいても,上記の地盤環境と同様に,過去70年間,地下水位以下にあったと予想され,腐 食せずに,健全性を保っていたと判断される.

(3) 載荷試験結果

a) 鉛直載荷試験結果について

この結果の詳細は前段の表-12 鉛直載荷試験の鉛直支持力特性としてまとめて示した。

これによると、単杭の支持力(第1限界抵抗力)は 388~506kN に推移している.これは、後述する杭基礎検討結果の杭頭反力(常時~地震時)を上回るものである.第2限界抵抗力に関しては700~800kNに推移している.

単杭鉛直載荷試験の鉛直ばね定数は,第1限界抵抗力が出現する前の荷重ステップである300(kN)時の値を採用し.群杭鉛直載荷試験での鉛直ばね定数は,最小の値である最大荷重800(kN)時の値を採用した結果である.群 杭での第1および第2限界支持力の確認はできなかった.今後の課題である.

b) 水平交番載荷試験結果について

詳細は前段で述べたが,水平変位量に実測値を用いて水平地盤反力係数を求めた場合,荷重 20~120(kN)の 範囲で 20~160(MN/m³)となり,理論式を用いて水平地盤反力係数を求めた場合と近似することが分かった.また, 傾斜角に実測値を用いて水平地盤反力係数を求めた場合でも,荷重 20~120(kN)の範囲で 150~500(MN/m³)と なり,理論式を用いて水平地盤反力係数を求めた場合と近似することが分かった.ここで,Changの式に水平変位量 および傾斜角を代入して検討すると,両パラメータともに理論式と実測値で整合性があり,実測値の信頼性は高いと 判断された.また,水平変位量から求めた水平地盤反力係数は一定の相関があるのに対して,傾斜角から求めた水 平地盤反力係数は荷重 100~400(kN)の領域でのパラツキが多かった.これらのことより,実測水平変位量から求め られる水平地盤反力係数が妥当であると判断された.

減衰定数に関しては,荷重または水平変位量が大きくなるに従い,その減衰率hも増加する傾向となった.最大繰返し荷重である120(kN)では,最小繰返し荷重である30(kN)の時の約1.5倍となった.

水平ばね定数は,正荷重載荷と負荷重載荷を比較するとほぼ同じ値となり,載荷方向に関係がないことがわかった.

(4) 現行の設計手法からのアプローチ

今回明らかになった健全な木杭を存置して利用することができれば,社会資本整備におけるコスト縮減に寄与する ことから,既設木杭の耐震性について概略検討を行った.

ここでの検討には,多くの仮定が含まれており,橋梁架け替え時に既設橋台の利用の可否については予測しづら い面があり,本来なら,既設木杭に現行基準で定まる下部工,上部工を載せて検討すべきところであるが,現時点で 対象箇所,形式など,明らかではないので,今回の検討は既設橋が存在したとして,現行道路橋示方書の耐震性を 有するかどうかの概略検討にとどめた.

a) 検討条件

橋梁概要

竣工は昭和初期で,上部工総幅員16m,橋長65.016mの3径間鋼鈑桁橋であり,木杭基礎である.地盤は,N値 5程度以下の軟弱な沖積粘性土層が堆積しており,A1橋台の基礎杭は粘性土中に打ち止められており,Nわゆる摩 擦杭となっている.

基準とした資料

- ・ 道路橋示方書 , に準拠して,基礎杭の検討を行った.
- ・ 地震規模は中規模地震とする. (阪神・淡路大震災時に発生した加速度相当:図-1 参照)
- · 準拠基準:道路橋示方書 下部構造編, 耐震設計編 (H14.3)
- 地盤特性
- · 地盤反力係数-1∶道路橋示方書 下部構造編に基づいて求めた N 値による地盤反力係数

・ 地盤反力係数-2:今回の載荷試験結果による地盤反力係数
 鉛直バネ定数 Kv=122KN/mm=122,000KN/m 表-12 参照:単杭の最小値
 水平地盤反力係数 K=-3.4 + 4,007 · (P+12) (MN/m³) 図 41 参照

b) 検討結果

検討結果を表-19,表-20に示す.

道路橋示方書による検討では,設計水平震度 0.3 以下であれば,支持力,杭頭水平変位,杭体応力度のいずれ も許容値以下である.(表-19 参照)ただし,杭体応力度の照査は実杭の杭断面積を用いているので,橋梁台帳に図 示されている杭径 0.2m として検討すると,許容応力度を超過する結果となった.

載荷試験結果による地盤反力係数を用いると,道路橋示方書のN値により求めた地盤反力係数を用いた場合に比べ,杭頭水平変位,杭体応力度は大きくなる.(表-20参照)

以上のことから,春日出橋における木杭は,道路橋示方書(中規模地震)クラスや,阪神·淡路大震災時に当該地 で発生した加速度(200gal~300gal)までは概ね耐えられることが分かった.しかし,LWL条件では,水平交番載荷 試験より得られた地盤反力係数を用いると,杭頭水平変位が大きくなり,震度 0.2 以上から許容変位量(1.5cm)を上 回る結果となった.

前段で述べたように,当該地においては,平成7年の阪神・淡路大震災に発生した加速度(280gal~300gal)は 既に経験しており,今回の木杭の外観調査から,杭の損傷は見受けられなかったことから,致命的な変位は発生しな かったものと推察される.

また,今回の地盤調査結果から,許容押し込み力に関しては,N値のみによる評価では,地盤のもつ周面抵抗力を 過小に評価される可能性があることや,杭の外側と杭間の地盤定数も明らかに違う結果となり,木杭施工後の地盤評 価や,上記の木杭の許容水平変位の妥当性も含めて,現在の設計手法で,いかに評価,活用していくかが,今後の 課題である.

(5) データベース作成について

a) 概要

今回の試験結果が,これら補強技術に少しでも役にたつようにするためには,今後,大阪市内の実態調査を行って, データベースを作成していく必要があると思われる.

そこで,大阪市内の中心を流れる,道頓堀川に架かる橋梁に着目して,補強や架け替えの優先順位を選定する観点で,橋梁を診断した事例を紹介する ⁶⁾.この事例はあくまでも,簡易的な手法であるが,今後の橋梁管理(データベー ス作成)の一助になれば幸いである.

実際には,建造年代や橋梁形式などが異なる23橋がかかる道頓堀川沿いの各橋梁の耐震診断の事例である. 表-21に診断を行った橋梁一覧を示す.

插测夕	楂沙夕		결	経過	
恒木口	用任地	自圩日	西暦	元号	年数
松島橋	大阪市西区	大阪市	1930	昭和 5 年	72
伯楽橋	大阪市西区	大阪府	1940	昭和 15 年	62
千代先橋	大阪市西区	大阪市	1927	昭和 2 年	75
岩松橋	大阪市大正区	大阪府	1997	平成 9 年	5
大正橋	大阪市浪速区	大阪府	1974	昭和 49 年	28
大浪橋	大阪市浪速区	大阪府	1937	昭和 12 年	65
日吉橋	大阪市浪速区	大阪市	1935	昭和 10 年	67
汐見橋	大阪市浪速区	大阪府	1964	昭和 39 年	38
幸西橋	大阪市浪速区幸町2丁目	大阪市	1970	昭和 45 年	32
幸橋	大阪市浪速区幸町2丁目	大阪市	1968	昭和 43 年	34
西道頓堀橋	大阪市浪速区幸町2丁目	大阪府	1958	昭和 33 年	44
住吉橋	大阪市浪速区幸町1丁目	大阪市	1925	大正 14 年	77
深里橋	大阪市浪速区幸町1丁目	大阪府	1930	昭和 5 年	72
大黒橋	大阪市中央区道頓堀2	大阪市	1930	昭和 5 年	72
新戎橋	大阪市中央区道頓堀2	大阪市	1963	昭和 38 年	39
道頓堀橋	大阪市中央区道頓堀2	国土交通省	1936	昭和 11 年	66
戎橋	大阪市中央区道頓堀2	大阪市	1925	大正 14 年	77
太左右衛門橋	大阪市中央区道頓堀1	大阪市	1958	昭和 33 年	44
相合橋	大阪市中央区道頓堀他	大阪市	1962	昭和 37 年	40
日本橋	大阪市中央区道頓堀他	大阪市	1969	昭和 44 年	33
下大和橋	大阪市中央区道頓堀他	大阪市	1992	平成 4 年	10
上大和橋	大阪市中央区道頓堀他	大阪市	1992	平成 4 年	9
天王寺バイパス	大阪市天王寺区東河堀町他	大阪府	1970	昭和 45 年	32

表-21 診断を行った道頓堀川沿いの橋梁一覧表

														0.35 1度		0.35					
		8m)	遙否				-	,	ſ	H	-	Ŧ		, 0.3 割げ応力		÷∿断応					
		杭径0.308	祥 応力感 人 ^{mm} a	0.6	1.2	1.2	1.2	1.2	1.2	1.2	1.2	-		- - 0.25 震度) VL時の杭体曲		0 - 一 の抗体t VL時の抗体t					
		実測平均	せん断 応力度 N/ ^{mm²}	0.16	0.59	0.63	0.66	0.7	1.09	1.13	1.16	力度			一倒	15 155 0.2 一」175 0.2					
		5.力度(上	断面積 A= D ² /4 mm ²	74468	74468	74468	74468	74468	74468	74468	74468	曲げ応		- 0.1 0 設計水 ³ (体曲げ応力E	断応ታ	0.1 1011本 1011本					
	力度	せん断応	せん断力 S S	11.73	44.06	46.71	49.37	52.02 47 A	81.34	84	86.66	抗体		0 0.05 0 0.05	もち	0 005 11 HWL時の航					
	体応	(適否						T				(Smm/N)題代动計曲朴祎 忘 左 方 ら ∞ ∞ 4 ∽	•	i	(2mm/N)寛代初浦Aサ本社 は、					
	4	0.297n	力度 a a ² mm ²	7.4	4.8	4.8	4.8	4.8	4.8	4.8	4.8				_						
턼		」平均杭径	「 し し し し し し し し し し し し し	.86	.73 1	1 1	.06	. 22	.05	.21 1	.38	5									
き杭の検		(上中実測	1孫数 西 ³ /32 = 西 N = N	0686 0	0686 2	0686 2	0686 3	0686 3	0686 5	0686 5	0686 5					整合 235 235					
彐橋基礎		げ応力度		22 257	02 257	45 257	87 257	29 257 aa 257	-97 257	.39 257	.82 257	1				10.25 10.55					
力係数による春日		#	を で 大いり 小小小小小小小小小	2. 7. 7.		7.	α	12	13	13	<u>t</u>				0.2 躯体骤度 						
		道示	道否		10	10	10				10			ᅿ		1015 - 112					
	杭頭変位		位 部 cm	1.5	1.5	1.5	÷.			1.	-	-		平変位		0.1 10 10 10 10 10 10 10 10 10 10 10 10 10					
也盤反			点 G	0.34	0.75	0.8	0.84	0.89	1.39	1.44	1.48	-	۱ <i>1</i> ۲۵ .	意		0.05 計容変位					
めたり	ŧ		適否									N X X	weighter weig	杭雪	1.6						
こて来。	引き抜	道示	許容 引抜力 (N值) KN	-64	-128	-128	-128	-128 -64	-128	-128	-128	2/ 4=209 2/ 3=279	平均杭谷								
Ш.		鎟	適否								, 839. 839.	画画の									
りN値を		載荷試	第一限界 KN	380	380	380	380	380	380	380	380	-9.7£IJ	と中位実涯 (参照)	Г	Ţ	- 引き抜き)					
ましよ						_	-	_	+	$\left \right $	-		実 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	」 因 [本義度) (10込み・ (10込み・ 者力))					
示方書			許押 杭着 心之 刚力 州	228	303	303	303	303	303	303	303	¥(8 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	5 、上位: (径 を用)最小値 (報告書	曲方向	1	11-1					
路橋	ų		- 「 粘) 適否			_	_		╀	$\left \right $	-		の平単小う均、杭()	抗		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1					
剽 6	押し	摩擦杭	許押 松着 (均) 外力 以	209	279	279	279	279	279	279	279	摩擦杭 (摩擦桃	(東) 海 (東) 御 (垣) 御 (垣) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	瑎		↓ 100 000 000 000 000 000 000 000 000 00					
表-1		 美元,	適否					×	×	×	×	率の4(率の3	の上 と 表で立 と 谷 ン を む ン 表し っ 水 し っ 水 こ っ 。 ・ 永 た っ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	L V							
		ň	普 (143	191	191	191	191	191	191	191	時安全2 震時安全	住 で う ち む (MM/m ³)	L L	350 350 300 300 300 300 300 300	3,1(又同內(時計) 2,82,05,03,03,05,05 2,92,05,05,05,05,05,05,05,05,05,05,05,05,05,					
			適否	×	×	×	×	× >	< ×	×	×	「「「」」」	山剤以がかの。								
			許容 挿込力 (N値) KN	66	130	130	130	130	130	130	130		im程度の1 ので、実) 用いて,I 122,000kh			se and second					
	反力		最小 KN	49.16	-11.3	-19.95	-28.51	-37.08 55.24	-71.6	-80.15	-88.78	4=143KN	=228KN =303KN 適からの.(適なしる(の結果を) の結果を) 3.4 + 4,(Ŕ		→					
	杭頭		[™] 素	106.91	165.44	174.08	182.65	191.21	246.25	254.79	263.42	, 573.3/ 573.3/3	610.8/4 910.8/3 910.8/3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	方向反		◆ 100 02 02 02 02 02 02 02 02 02 02 02 02 0					
	JhN		裹土 込土 庄	0	0.24	0.24	0.24	0.24	0.24	0.24	0.24	7.4U	ン 最 数 定 反ト 大 等 数 力の 口 口。係	山	l l l	・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・					
	震思		题	0	0.15	0.2	0.25	0.3	0.15 (0.2	0.25	言書表-9	モ断反直平・し力力パ地	ت ه		05 0.1 					
			ーン名	常時		甘肥生	CH20/0*	出	54 E4	书闡時		注1)報告 注2) <i>"</i>	注注30 年43 ~ 13 14 14 14 14 14 14 14 14 14 14 14 14 14	W L Β							
			荷重ケ・			L N H			L W L					Ĩ	ಸ ಸ ಸ ಸ (N)	X)(t.又向代解於 ク ← ← 、 、 、 」					

ſ	- 1		1001	<u> </u>	<u>г</u>			1		- 1	1	1	l						
		(m80	(27) 登支 2.1	\vdash	┢	Н	\vdash	Н	×	╉	+	┝				0.35	力度		6.73度
		航径0.3	# 「 」 N/mm,́	0.6	1.2	1.2	1.2	1.2	0.6	1.2	1.2	1.2				0.3	杭体曲げ応.		203
		実測平均	せん断 応力度 N/mm ²	0.16	0.59	0.63	0.66	0.7	0.64	1.09	1.15	1.2	〕度			0.2 0.2 躯体震度)	応力度 ── LWL時の	JHN	
		(力度(上	断面積 A= D ² /4 mm ²	74468	74468	74468	74468	74468	74468	74468	/4468 74468	74468	げ応ナ			0.15 計火平識度(応力原	0.15 比水平震度 167.九平震度
	度	せん断応	ん断力 S KN	11.73	44.06	46.71	49.37	52.02	47.4	81.34 2.	86.66	89.31	体曲			.05 0.1 競	きの杭体曲け 力度	せん断	2005 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	本応力	-	· · · · · · · · · · · · · · · · · · ·		ŀ	_	_		+	-	+	-	节				HWL 開 名	Ч	· · · · · · · · · · · · · · · · · · ·
	杭	297m)	容度,。	+	∞	8	8	8			x ∞	∞		16	(Smm/N) 愈 い 心 か (Smm/N) 愈 い (Smm/N) 愈 い (Smm/N) (Smm	ວັ	<u>t i</u>		(Smm/N)カた(引通み5本本社 左
		均杭径0.	新 「 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 「 」 」 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」	7.4	14.	14.	14.	14.	7.7	14.	14. 14.	14.							
		中実測平	曲 応力康 = M / N/mm ²	0.67	3.14	3.36	3.6	3.84	3.43	6.63 2.2	7.17	7.45							
免討		度 (上日	断面係数 <= D ³ /32 ^{mm³}	2570686	2570686	2570686	2570686	2570686	2570686	2570686	2570686	2570686							4 2 3 3 3 3 3 5 3 5 5 3 5 5 5 5 5 5 5 5 5
ñ0∦		げ応ナ		<u>د</u> ر «		<u>65</u>	25	36	2	8	د 4	15							25 25 25 25 25 25 25 25 25 25 25 25 25 2
甚礎木		₿	Ψ Ψ Ύν Σ	÷	÷.	8.	6	°. 0	ŝ	14	18.	19.							2 5 2 条 震 () · · · · · · · · · · · · · · · · · ·
日橋連		道示	適否		╞				_	×	××	×							
\た春日	頭変位		許容値 cm	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	zz			変位			01 01 01 01 01 01 01 01 01 01 01 01 01 0
女を用い	苻		杭頭変位 cm	0.16	1.14	1.25	1.37	1.5	1.28	3.16	3.53	3.72	2/4=209K 2/3=279K			下于			H W L時の抗
也盤反力係数	ŧU		適否	Ш								839. 839.	を l l	を H	伉頭	4	35		
	引き抜	道示	許容 引抜力 (N値) KN	-64	-128	-128	-128	-128	-64	-128	-128	-128	, U J		中 芯 谷 谷				(mo)
、る社		載荷試験	適否									- 手表-	値の	[● 2 2					
靖果によ			第一限界 KN	380	380	380	380	380	380	380	380	380	注8) 報告書 注9) <i>"</i>		ド 中 白 参照)	_		1	035 (吉拔彦) (吉拔彦)
式胰糸	Ī		適否												測値と 	л Т			0.25 , , , , , , , , , , , , , , , , , , ,
載荷記			許容 挿込力 (杭間粘 者力) KN	228	303	303	303	303	228	303	303	303			、上位実 えを用いて 最小値) 報告書図	方向及			
-20	Ę,	蒘擦杭	適否										~ ^		う均 杭 (ち杭 の)	曹			・
粻	挿し込		# # ((209	279	279	279	279	209	279	279	279	摩擦杭) (摩擦杭)		実測・参資利用。 御値のです。 (V)1000000000000000000000000000000000000	持			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
		"玉	適朽(×		×	××	×	率の4 (率の3		の上と表で位し。・実たて、	ر ح			
		迥	許容 押込力 (粘着力 KN	143	191	191	191	191	143	191	191	191	常時安全2 (震時安全		ら (金 ((((MN/ ^m ³)) ((MN/ ^{m³}))	L	350	300 250 300	A)(戊灵向六師府 3 중 중 양 c 양 중 양 3 중 중 양 c 양 양 양
			適否	×	×	×	×	×	×	×	××	×	다. (북 _ (북		位測以№(C 置値下 m				
			許容 措込力 (N値) KN	66	130	130	130	130	66	130	130	130	(分母の4 分母の3		5m程度の ので、実 用いて、 :122,000k (P+1				S:
	反力		最小 KN	49.16	-11.3	-19.95	-28.51	-37.08	55.24	-71.6	cl.08-	-97.42	(4=143KN 3=191KN (H=228KN	1=303KN 1二で 牛 じ る 22 KN / mm= -3.4 + 4,	反力			
	杭頭		₩ 平 単 、 、 、 、 、 、 、 、 、 、 、 、 、	106.91	165.44	174.08	182.65	191.21	123.29	246.25	254.79	272.06	573.3/ 573.3/3	910.8/4 010 8/3	910.8/2 2最大は地 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市 市	∄ 方向,			◆ 5 0.2 (2)(+押U込さ 力(+押U込さ (初開始書力)
ĺ	₩N		裹士 込士 圧		0.24	0.24	0.24	0.24	0	0.24	0.24 0.24	D.24	ሀ ግግ		ン最教定反ト大等数カでには。	杭剸			* 0.16 11 0.15 公式の回风 (技能力力(
	憲		版体	0	.15 (0.2 (.25 (0.3	0	.15	25 (0.3	青表-9		ーチでに回すメの係る整	جانر			- 0.1 - 0.1 - 0.1 - 0.1 - 0.1 - 1 - 0.1 - 1 - 0 - 1 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
			к Я	常時	0) ^{半圓岩}			北市	0	地震時	Ľ	E1)報告書 E2)	ŧ3) ″ ≒4) "	#4) * #2) 第 #2) 日ゴモ 市の圏 市 学 部 協 部 の圏 大 子 二 合	N L 問			
荷重ケー					<u> </u>	HWL	-				T W L		元 元:	炽 第	<u>四 四 页 页</u>	Ή	350	300 (N) 250	N)(八凤向六師社 7 卒 友 労 っ 皆 ố ぎ

b) 判定手法

橋梁の耐震補強,または架け替えの優先順位を決定する手法として,次のような重み付けスコアリング・モデルを採用している.

耐震に関する要素である「建設年代」「液状化」「予測震度」等の基準を決定する.

それぞれの基準を耐震性,重要性等に基づき,2~5段階に0~40程度の重み付けを行う.

それぞれの重み付けスコアを加算し,重み付けスコアの合計を出す.

合計値の高い橋梁が耐震補強,または架け替えを優先するものと評価する.

基準である耐震診断項目は,耐震の諸要素の中で,重要性が高く,且つ比較的情報が得られやすい要素としている.

c) 耐震診断項目

耐震診断項目は,表-21 に示すように耐震の構成要素を橋梁本体そのものの構造物,それを支える地盤,周辺環境条件等による重要度の3つに大きくグループ化できる.

耐震診断は,構成要素を細分化すればするほど,より正確となるが,実務的ではない.ここでは大枠を示すこととし, 耐震診断項目は,表-9.24の数字の15項目とし,以下に示すような各項目について耐震性,重要性等の検討を行い,項目毎に表-22に示すような重み付け点数配分ができるとして評価することにしている.

以下,それぞれの診断項目について,ポイントを述べる.

表-21 橋梁耐震診断項目

1)構造物

·建設年代(経過年数)

建設してからの経過年数が経つほど,コンクリートのひび 割れ・はく離,地盤の洗掘等の老朽化・劣化が進む.また, 建設年代から当時の設計基準が推定でき,新しい耐震設 計基準によるものであれば,耐震性が高いと評価される.

·道路幅員

道路幅員は,交通量に関係し,道路の重要度を示す大きな要素となる.幅員が20m以上になると,主要幹線道路となり交通量が非常におおくなる.

・橋脚高さ,スパン長,基礎形式

橋脚高さ,スパン長は固有周期に関係する,一般的に 固有周期が概ね1.5秒以上になると振動数が減少するため,固有周期が長くなるほど耐震上は有利になる.

大項目	中項目	小項目	細目
(1)構造物	建設年代	老朽化·劣化程度	ひび割れ・は〈離・洗堀等
	"	耐震設計基準	強度·構造
	道路幅員	交通量	
	橋脚高さ	固有周期	
	スパン長	固有周期	
	基礎形式	直接基礎·杭基礎	
	落橋防止システム	けたかかり長	最小値(70+0.5L)
	11	落橋防止構造	
	11	変位制限構造	
	11	段差防止構造	
	その他耐震装置・構造	ジョイントプロテクター	
	"	免震支承	
	11	地震時水平分散構造	
(2)地盤	液状化の可能性		
	予想震度		
	耐震設計上の地盤種別		種、種、種地盤
	耐震設計上の地盤区分		A、B、C地域
	地盤改良工		
(3)重要度	重要度		広域緊急交通路
	11		A種、B種(特に重要)の橋
	人工密度	用途地域	商業地、住宅地、工業地等
	歷史的·文化的価値	文化財·史跡·名所	

·基礎形式

基礎形式には直接基礎と杭基礎に大きく分類される.直接基礎による構造物は,杭基礎に比べ,砂質地盤では液状化,粘性土地盤では圧密沈下のように地盤の影響を受けやすいため,耐震上は不利になる.

・落橋防止システム

落橋防止システムは,地震により上部構造が落下するのを防ぐことを目的として設ける構造であり,けたかかり長, 落橋防止構造,変位制限構造および段差防止構造から構成する.

不測の事態のフェイルセーフ機構として、落橋防止システムは安全性や機能回復力を増す、

・その他の耐震装置・構造

耐震装置・構造は,落橋防止システムの他に伸縮装置の破損を防止するために設けるジョイントプロテクター,橋の 固有周期を適度に長くする機能と減衰性能の増大を図る免震支承や,地震時の上部構造の慣性力を複数の下部構 造で分担する地震時水平分散構造がある,これらの装置や構造をしていれば,耐震性は増す.

2)地盤

·液状化の可能性,予測震度

大阪市は,液状化判定を250mメッシュで行っており,液状化の可能性を「極めて発生し易い」~「極めて発生し難い」までを4段階に重み分けする.大阪市は,予測震度も250mメッシュで行っている,これを5段階に重み分けする.

🧭 株式会社 ピーエス三菱 技報 第2号 (2004年)

予想震度

危険度

·地震設計上の地盤種別,地盤区分

「道路橋示方書・同解説」でいう耐震設計上の地 盤種別である 種地盤, 種地盤, 種地盤に, また耐震設計上の地盤区別(地域別補正係数)で あるA地域,B地域,C地域にそれぞれ重み付け て分類する.さらにもともと比較的軟弱地盤であっ ても,地盤改良工事の有無を重み付け項目とする. 3)重要度

·重要度

地域防災上の位置づけ,2次災害の可能性,利用 状況と代替性の有無,機能回復の難易等,橋梁の 重要度を評価する.例えば,「道路橋示方書・同解 説」でいう「B種の橋(特に重要な橋)」は対象区域 外からの利用者も多く,機能性,利用度が非常に 高い.また災害時の緊急交通路として耐震強化重 点路線に指定されている道路は,非常に重要性が 高い.また大黒橋のように水門機能を兼ね合わせ た橋梁も重要である.

·人口密度, 歷史的·文化的価値

橋梁の重要度を推測する要素の一つとして,周囲 の人口密度が考えられる,人口密度は都市計画 上の用途地域が商業地であるか,住宅地であるか, 工業地であるかという土地の利用状況から推定し て,その地域の橋梁の利用度・重要度を評価する. さらに橋梁が文化財・史跡・名所等の歴史的・文化 的価値がどの程度あるか否かについて評価する.

·30年未ネ 30 50何未満 1(<u>i0~70年未満</u> ′0年以上 30 1(<u>強</u> 弱<u>以</u>「 道路幅昌 耐震設計上の地盤種別 <u>種地盤(良好な洪積地盤)</u> 種地盤(種、種、種以外) 0m未満 20m未満 10 種地盤(種以外) 0m~30m未え 種地盤(軟弱地盤) 40m未満 30 10 橋脚高さ 耐震設計上の地盤区分(地域別補正係 A地域(1.0) 10m未満 0m~20m未満 3地域(0.85) 20m~30m未 10 〕地域(0.7) 30m以上 スパン長 地盤改良工 5m<u>未満</u> 5m~50m未満 25m 0m以上 基礎形式 重要度 接基礎 <u>特に重要な橋</u> 上記以外の橋 <u>一</u>礎(PHC杭) 基礎(鋼管杭) 基礎(場所打ち杭) 落橋防止システム 工密度 <u>商業地</u> 住宅地 あり 0 なし Τ業地 その他 その他耐震装置・構造 歷史的·文化的価値 <u>文化財</u> 史跡・名所

表-22 各診断項目の重み付け点数表

危険度

建設年代

液状化の可能性	
極めて発生し易い	3
発生し易い	2
発生し難い	1
極めて発生し難い	

d) 判定結果

判定結果は表-23 に示したが,重み付けスコアの合計値が高い順位(耐震補強,または架け替えの優先順位)は,1 位戎橋・2 位道頓堀橋・3 位大黒橋・松島橋・千代崎橋という結果となっている.これらの橋が上位になった理由として, 建設年代非常に古い,道路幅員が広い重要度が高い,歴史的・文化的価値が高い,ということがいえる.

·戎橋は大阪のシンボルであり有数の名所である.また通行人が非常に多い.

 ・道頓堀橋は大阪の主要幹線道路である御堂筋に存在し,交通量が非常に多い.また災害時の緊急交通路として 指定されており,重要度も高い.

·大黒橋は道頓堀川の水位を調整·管理する「水門」があり、災害時にその果たす役割は非常に重要である.

この事例では,対象範囲が比較的限られた範囲であるため,液状化の可能性,予想震度,耐震設計上の地盤種別,地域区分,人口密度などでどの橋梁も同じ評価となり,あまり評価点に差がでていないようである.また橋梁の基礎形式などは不明な点が多く,仮定で入力している項目が多い.従ってより精度の高いデータベースにしていくためには,これらの項目でそれぞれの精度の高い情報を入力することや,地域特性が出てくるような範囲,例えばもっと山麓沿いや湾岸部などの橋梁耐震診断を実施してゆき,必要に応じて重み点数を変更,診断項目を追加するなどの工夫が必要であると考える.

											• (•• • •)							
橋梁名	経過 年数	順位	合計	経過 年数	道路 幅員	橋脚 高さ	スパン長	基礎 形式	落橋防止 システム	その他の 耐震装置・ 構造	液状化の 可能性	予想 震度	耐震設計上 の地盤種別	耐震設計上の 地域区分 (地域補正係数)	地盤改良 工事	重要度	人口 密度	歷史的· 文化的価値
戎橋	77 年	1	200	50	10	0	5	5	10	10	10	20	5	10	5	0	30	30
道頓堀橋	66 年	2	195	30	40	0	5	0	0	10	10	20	5	10	5	30	30	0
松島橋	72 年	3	180	50	10	0	10	0	10	10	10	30	5	10	5	0	30	0
千代先橋	75 年	3	180	50	10	0	10	0	10	10	10	30	5	10	5	0	30	0
大黒橋	72 年	3	180	50	0	0	5	5	0	10	10	20	5	10	5	30	30	0
住吉橋	77 年	6	175	50	0	0	10	5	10	10	20	20	5	10	5	0	30	0
深里橋	72 年	6	175	50	20	0	10	5	0	10	10	20	5	10	5	0	30	0
日本橋	33 年	6	175	10	20	0	5	0	0	10	0	20	5	10	5	30	30	30
伯楽橋	62 年	9	170	30	20	0	10	0	10	10	10	30	5	10	5	0	30	0
汐見橋	38 年	10	165	10	30	0	5	0	0	10	10	20	5	10	5	30	30	0
大浪橋	65 年	11	160	30	20	0	10	0	10	10	10	20	5	10	5	0	30	0
日吉橋	67 年	11	160	30	10	0	10	0	10	10	10	30	5	10	5	0	30	0
相合橋	40 年	13	150	10	10	0	5	5	10	10	0	20	5	10	5	0	30	30
幸西橋	32 年	14	145	10	20	0	5	0	10	10	20	20	5	10	5	0	30	0
西道頓堀橋	44 年	14	145	10	20	0	5	0	10	10	20	20	5	10	5	0	30	0
岩松橋	5 年	16	140	0	30	0	10	0	10	10	10	20	5	10	5	0	30	0
大正橋	28 年	16	140	0	40	0	10	0	0	10	10	20	5	10	5	0	30	0
幸橋	34 年	16	140	10	10	0	5	5	10	10	20	20	5	10	5	0	30	0
天王寺バイパス	32 年	19	130	10	10	5	10	0	0	0	0	20	0	10	5	30	30	0
太左右衛門橋	44 年	20	120	10	0	0	5	5	10	10	10	20	5	10	5	0	30	0
新戎橋	39 年	21	115	10	0	0	5	0	10	10	10	20	5	10	5	0	30	0
下大和橋	10 年	22	100	0	10	0	0	0	10	10	0	20	5	10	5	0	30	0
上大和橋	9 年	22	100	0	10	0	0	0	10	10	0	20	5	10	5	0	30	0

表-23 橋梁診断結果一覧表(例)

6.課題と展望

(1) 課題

今回の調査では,約70年前に施工された木杭であっても,地下水位以下であれば,腐食せずに健全性を維持していることが分かった.載荷試験結果から,その支持力は,長期間経過しても,ある程度発揮される可能性があると判断された.

現行の道路橋示方書で,基礎の検討を試みた結果,中規模地震クラスまでは,概ね適合できる結果が得られたが, 一部,許容水平変位量を上回るケースもあり,今後,現行の設計手法でいかに評価していくが課題である.

また,橋梁を耐震という観点から捉え,ある一定の基準で診断し,それを比較することによって,耐震補強の優先度の判定を試みて,架け替えか補強かの判断が出来るような基礎資料を作成していく必要があると考えられる.

道路防災という観点では,既に「道路防災点検要領(地震)」に橋梁の耐震診断基準に関して,設計基準,基本諸 元及び地盤条件等,耐震性の判定に必要な基本データを収集し,データベースを構築する方法が提示されている.こ れは,橋梁の耐震に関するデータベース作成という積極的な取り組みである.

(2) 今後の展望

今回の載荷試験結果は,その地点の支持力を代表するものであるが,どの範囲にまで適用できるかについては, 今後,周辺地盤の構成や性状等を十分に検討していく必要がある.

たとえば、

地盤構成が同じである

N 値や圧縮強度等の強度特性が類似している

杭長がほぼ同じである

このような類似地盤について,比較整理して,今回の調査結果を有効に活用する必要がある.

図-42 に大阪平野部の地形・地質分類図及び代表的な東西断面図を示した.これによると,上町台地に隣接する (松谷町筋~御堂筋)付近は上位から沖積砂質土層が分布するが,さらに西側は上位に砂質土層,下位に粘性土層 が分布する地盤構成となっており,当該調査と類似した地盤は多いと判断される.また,大阪市内における多くの既 設の橋梁基礎は,前述のような地盤条件下で多種多様な支持形式で施工されていると判断される.今後,今回の調 査をふまえて,類似地盤(粘性土層主体),や異なった地盤(砂質土主体,砂質土粘性土互層)及び異なった支持形 式(支持杭)での調査を実施して,今回の調査と併せて,評価していく必要がある.

東西断面図(中央大通りΙ-Ι断面)

図-42 大阪平野部の地形・地質および断面図

参考文献

- 1) 阪神大震災被害状況調査報告書(平成7年4月):財 建設工学研究所)
- 2) 地盤工学会基準 杭の鉛直載荷試験方法・同解説,第一回改訂版,社団法人地盤工学会,2002
- 3) 土質工学会基準 杭の水平載荷試験方法·同解説,社団法人土質工学会(1983)
- 4) 丸の内ビルジング(旧丸ビル)の構造調査その8(松杭の鉛直載荷試験)
- 5) 国鉄本社庁舎基礎杭実態調査について
- 6) 関西都市域における地震防災に関する調査研究(平成15年8月)(社)建設コンサルタンツ協会近畿支部