柱梁接合部内で梁主筋を機械式継手により接合する

プレキャスト化工法の開発

1	. (t	じる	めに

RC 造建物のプレキャスト(以下 PCa) 化工法は主に超高 層物件で採用されてきたが、今後は中高層建物でも積極的に 活用していく必要があると考える.

本工法は柱,梁を単材で PCa 化し,柱梁接合部において梁 主筋を機械式継手により接合して現場打ちコンクリートによ り一体化する工法を対象としている.柱梁接合部内での機械 式継手の使用に際しては,継手部分の付着力について十分な 設計資料が得られていないため,柱梁接合部内での応力伝達 を実験等により確認しているのが現状である.本報告は柱梁 接合部内に継手を設けた試験体の付着性状および履歴性状が 通し配筋と同等であることを実験により確認したものである. 既往の実験ではコンクリート,鉄筋とも高強度材料を用いて いる実験が多いが本実験では中高層建物で比較的使用されて いる Fc=36N/mm², SD390の材料を用いている.

2.実験概要

2.1 試験体

PRC15J) である.

柱せいを D, 継手長さを L_j とすると, 柱梁接合部の中央に スリーブ継手を配置する場合の柱最小径は $D=2\times L_j$, 偏心配置 する場合の柱最小径は $D=1.5\times L_j+\alpha$ で, α は柱面から継手端

部までの鉄筋長さである.図-1に継手 偏心配置時の柱断面を示す.本研究で は α を 5db (db は梁主筋の呼び名に用 いる数値),および 7.5db とした.試験 体は実物を 1/2 に縮小した十字形部分 架構形式 4 体 (RCN, RC15J, RC10J,

		٩ ا	<u>.</u>			
	800		0	0		
	-			_		
	P			0		
	le –			0		
	Þ			0		
	Ŀ		F			
	α	1.	5Lj			
		[)			
図-1	縋	手	偏	ارل	配	置

の柱断面

試験体の諸元を表-1 に,材料試験結果を表-2 に示す.また 試験体配筋図を図-2 に示す.機械式継手は施工誤差を吸収し やすいスリーブ継手とした.

RCN は梁主筋を通し配筋とした試験体,RC15J は梁下端 筋に継手を設け,片側の α を 7.5db (両側 15db) とした試験 体で,実断面での継手中央配置に相当する.RC10J は片側の α を 5.0db (両側 10db) とした試験体で,継手は中央に配置 されているが α を小さくすることで実断面での継手偏心配置 を模擬している.PRC15J は継手施工個数を減らす目的で RC15J の梁下端二段筋を PC 鋼棒に置換えプレストレスを導 入した.スリーブ継手は D16 用を使用した (長さ 240mm, 外径 37mm).

2.2 実験方法

加力は柱脚部をピン支持,梁の両端をローラー支持とし,

技術本部	技術部	新石雅文
技術本部	技術部	渡邊一弘

表-1 試験体諸元

項	E		RCN	RC15J	RC10	J	F	PRC15J	
コンクリート設計基準強度			F _c =36N/mm ²						
_c B× _c D (mm)		480×480 550 :		550 × 4	00	480×480			
柱		主筋	14-D16 (SD390)						
	世故		4-D6 @50 (SD295A)						
		'冊' ክፓ	p _w =0.53%		p _w =0.4	7% r		_w =0.53%	
_b B× _b D (mm)			325×350						
	十位	上端筋	5	/4-D16	16 (SD390)		5/4-D16 (SD390)		
	土肋	下端筋	5	5/4-D16 (SD390)			5/0-D16 (SD390)		
梁	あばら筋		4-D6 @50 (SD295A)						
			p _w =0.79%						
		DO御井					PC鋼棒 1c-21¢		
PC则内		1			SBPR 930/1080				
拉入如 世效			4-D6 ×3段(SD295A)						
按合命 帝肋		p _{jw} =0	0.36%	p _{jw} =0.31%		p _{jw} =0.36%			
破壊形式			梁曲げ降伏型						
表-2 材料試験結果									
□ン 試験体 圧縮強度 N/mm ²		/クリート N1 (たく) 席		際月					
		圧縮強度	ヤング係数		数 鉄筋/	阡1八强 度		ハンフ係数	
		N/mm ²	N/n	nm²	PG婀倖	N/mm ²		N/mm ²	
	RCN	39.	1 2.4	1×10^{4}	D6	361 1.96		1.96 × 10 ⁵	
F	RC15J	43.	2 2.7	3×10^{4}	D16	469 1.94		1.94×10^{5}	

ー定軸力(0.1b・D・F_c)を加えた状態で柱頭部分に水平力を 載荷した.加力は層間変形角Rで制御し,正負交番繰り返し 漸増載荷で,変形角R=±0.25%(各1回),0.5%,1.0%,1.5%, 2.0%,3.0%,4.0%(各2回),5.0%(1回)とした.

3.実験結果

3.1 破壊状況および荷重変形関係

写真-1 に変形角 R=2.0%時のひび割れ状況を,図-3 に柱せん断力-層間変形角の関係を示す.図内破線は梁曲げ終局強度の計算値を示す.全試験体とも梁曲げひび割れ発生後,柱梁接合部にせん断ひび割れが発生し,梁主筋降伏の後,R=1.5~2.0%で最大荷重となった.最大荷重以降は接合部のせん断

図-4 柱梁接合部内ひずみ分布

ひび割れが増加し、梁端部のコンクリートの曲げ圧壊により 耐力が低下した. 各試験体の最大荷重は計算値に概ね対応し ており, RCN と RC15J の Q - R 関係はほぼ等しく, RC10J でも RCN に比べて大きな荷重低下は起こらなかった.

3.2 ひずみ分布

図-4 に正側載荷時の梁下端一段目筋のひずみ分布を示す. 全試験体とも R=1.0%で危険断面位置のひずみが降伏ひずみ を超えた. 通し配筋の RCN と継手を設けた試験体を比較する と、降伏時のR=1.0%までほぼ同じ分布傾向を示した.継手が ある試験体では R=1.0%以降の降伏ひずみ到達領域が柱の内 側まで拡大した.

3.3 付着応力

図-5 に、柱梁接合部内の主筋ひずみゲージの測定値を応力 度に変換し、測定区間の鉄筋の力の差を鉄筋の公称周長×区 間長で除した付着応力度の推移を示す. 柱梁接合部内全体の 平均付着応力はほぼ同等である. 図-4 に示す測定区間別に見 てみると, 引張側(区間Aの正荷重時,区間Cの負荷重時) では,通し配筋の RCN に比べて,継手のある試験体では鉄筋 部分の長さが短くなるほど付着応力度が小さく、また付着応 力度の低下が生じるが、圧縮側(区間Aの負荷重時、区間C の正荷重時)では、各試験体ともほぼ同等な付着応力度とな っている. 中央区間 B では, RCN に比べて継手のある試験体 の方が付着応力度は大きく、付着劣化も生じていない.

4.まとめ

Fc=36N/mm², SD390 クラスを使用し, 柱梁接合部内でス リーブ継手により梁主筋を接合した場合でも、通し配筋と同 等の耐力と履歴性状を有することが確認された. 接合部中央 のスリーブ継手区間の伝達力を鉄筋付着応力に換算する と, 通し配筋の場合と同等以上であることが確認された. Key Words: 柱梁接合部,機械式継手,付着,プレストレス

新石雅文

渡邊一弘