ダックスビーム工法(超高強度低桁高 PC 橋)の開発

技術本部	土木技術第一部	桜田道博
技術本部	土木技術第一部	雨宮美子
東北支店	土木工事統括部技術部	渡辺浩良
技術本部	土木技術第一部	森 拓也

概要:超高強度繊維補強モルタル(設計基準強度120MPa)を使用し,桁高支間比が1/30以下の低桁高PC橋を実現するダックスビーム工法を開発した.ダックスビーム工法は当社独自のものであり,既存の低桁高工法に比べ,主桁本数の減少,施工の省力化および工事費の低減,等が可能となる優れた工法である.ダックスビーム工法を開発するにあたり,超高強度繊維補強モルタルの材料試験,PC梁部材の曲げ破壊実験,せん断破壊実験および疲労実験を行った.これらの実験結果より,ダックスビーム工法の実用化は十分可能であることが確認された.

Key Words:低桁高橋,超高強度,クリープ,乾燥収縮,曲げ,せん断,疲労

1.はじめに

近年,河川改修や都市再開発事業に伴い,建築限界の制限が厳しい箇所に橋梁を計画しなければならない事例 が増えており,低桁高橋梁のニーズが増えている.桁高と支間との比が 1/30 以下の低桁高 PC 橋では,図-1 に示す とおり,作用荷重により発生する桁の上・下縁の応力度が,通常の桁高の PC 橋に比べ大きくなるため,大きなプレス トレスを導入する必要があり,プレストレス導入時の桁下縁や設計荷重時の桁上縁の圧縮応力度が許容値を上回るこ ととなる.そこで,設計基準強度が 120MPa の超高強度繊維補強モルタルを低桁高 PC 橋へ適用し,モルタル自体 で大きなプレストレスに抵抗させる新たな低桁高工法(以降,ダックスビーム工法)を考案した.本工法は,既存の低桁 高工法に比べ,主桁本数の減少,施工の省力化および工事費の低減,等が可能となることが試設計と工事費の試算 から明らかになっているが ^{1),2),3),4)},ダックスビーム工法を実用化するにあたっては,超高強度繊維補強モルタルの材 料特性,はり部材としての力学的特性および施工性,等を確認する必要がある.そこで,超高強度繊維補強モルタル の材料試験,超高強度繊維補強モルタルを用いた PC はり部材の曲げ破壊実験,せん断破壊実験および疲労実験 を行った.本文では,これらの結果について報告する.なお,ダックスビーム工法は,高じん性(Ductility),高強度 (Strength)および低桁高(Slim)に由来している. (導入時)

2.超高強度繊維補強モルタルの材料試験 (1)試験方法

超高強度繊維補強モルタルの材料特性を確認するため 表-1 に示す材料試験を行った.使用材料,示方配合,練 混ぜ方法,養生方法および材料試験状況はそれぞれ,表 -2,表-3,図-3,図-4および写真-1のとおりである.

図-1 桁の応力状態

1 / 23

表-1	試験項目	および	試験方法
·L\ I			

試験項目	試験方法
スランプフロー	JISA 1150 に準拠
凝結	JIS A 1147 に準拠
圧縮強度	JISA 1108 に準拠,供試体: 10×20cm,材齢:3日(蒸気養生後),28日
ヤング係数	JIS A 1149 に準拠 , 圧縮強度試験時に測定
引張強度	JIS A 1113 に準拠,供試体: 10×20cm,材齢3日(蒸気養生後)
曲げ強度	JISA 1106 に準拠,供試体:10×10×40cm,材齢3日(蒸気養生後)
中性化	JIS A 1153 に準拠,供試体: 10×10×40cm,促進方法:20 ,CO2 5%,RH60%
凍結融解	JIS A 1148(A 法)に準拠
	供試体: 10×10×40cm, 蒸気養生後 28 日間水中養生した後に試験開始
乾燥収縮	JIS A 1129 に準拠
	供試体:10×10×40cm, 材齢 3 日(蒸気養生後)より測定開始, 20 ,RH60%で保管
クリー プ	JIS 原案 , コンクリートの圧縮クリープ試験方法(案)5)に準拠 , 供試体 : 10 × 10 × 40cm
(試験中)	材齢 3 日(蒸気養生後)より載荷 · 測定開始 , 20 , RH60%で保管 , 載荷荷重 : 500kN(₃/3)
	載荷方法∶供試体中心部に配置した PC 鋼棒(32mm)により載荷
	荷重の管理:載荷荷重は PC 鋼棒に貼付したひずみゲージで管理 , PC 鋼棒は載荷荷重が初
	期値に対し±2%以内となるよう定期的に緊張
塩分拡散係数	JSCE-G571-2003(電気泳動法)および JSCE-G572-2003(浸漬法)に準拠
(試験中)	供試体: 10×20cm

表-2 使用材料

材 料	記号	摘要
セメント	С	シリカフュームセメント(三菱マテリアル製),密度 3.08g/cm ³
细结发	CE.	OL13/.16(ベカルト社製), 引張強度 2340MPa
到些利息	SF	長さ 13mm , 径 0.16mm , アスペクト比 81 , 密度 7.85g/cm³
細骨材	S	砕砂(神町工場), 表乾密度 2.57g/cm ³ , 吸水率 2.59%, FM2.95, 最大寸法 5mm
高性能 AE 減水剤	SP	マイテイ 21WH

表-3 示方配合								
配合	W/C	Air	SF 量		単位量(kg/m³)		SP/C
No.	(%)	(%)	(vol.%)	W	С	S	SF	(%)
1	17	2.0	0.0	210	1235	948	-	3.0
2	17	2.0	1.0	210	1235	948	79	3.0
3	17	2.0	2.0	210	1235	948	157	3.0
3	16	2.0	0.0	210	1313	904	-	3.0
4	20	2.0	0.0	200	1000	1186	-	3.0
5	23	2.0	0.0	200	870	1293	-	3.0

写真-1 超高強度繊維補強モルタルの材料試験状況

1) スランプフロー

図-3 養生方法

鋼繊維の添加量とスランプフローとの関係を図-4 に,スランプ試験の状況を写真-2 に示す.これは,配合 No.1~ No.3(W/C17%,単位水量 210kg/m³)の試験結果である.鋼繊維の添加量が大きいほど,スランプフローは低下する 傾向にある.鋼繊維添加量が 1vol.%までは,粘性が比較的低く,施工性は良好であったが,鋼繊維を 2vol.%添加 すると,粘性が過大となり施工は困難と考えられた.締固め不要のスランプフローを 650mm 以上と考えると,現配合 での鋼繊維添加量の限界は 1.5vol.%程度であると推察される.

図-4 鋼繊維添加量とスランプフローの関係

写真-2(b) スランプフロー(配合 No.2)

写真-2(a) スランプフロー(配合 No.1)

写真-2(c) スランプフロー(配合 No.3)

2) 凝結

超高強度繊維補強モルタルの凝結性状を図-5 に示す. これは,配合 No.1(W/C17%,単位水量 210kg/m³, SF0vol%)の試験結果である.試験の結果,凝結の始発は 19 時間 30分,終結は 22 時間 30分となった.フランスの 超高強度繊維補強材料の指針のには,凝結が終了するま で蒸気養生を開始すべきではないとの記述があるため,本 モルタルでは,前置き養生が 24 時間程度必要となる.

3) 圧縮強度およびヤング係数

セメント水比と圧縮強度との関係を図-6 に示す.ダックス ビーム工法では超高強度繊維補強モルタルの設計基準強 度を120MPaとしているため,実際のモルタルの圧縮強度 は150MPa程度とする必要がある.材齢28日の圧縮強度 は材齢3日(蒸気養生直後)からほとんど増加していないた め,圧縮強度150MPaを得るには,セメント水比は5.6以 上(W/Cで18%以下)にする必要があると考えられる.材齢 3日(蒸気養生後)のヤング係数の測定結果を表-4 に示す. 超高強度繊維補強モルタルのヤング係数は,鋼繊維添加 量の影響はほとんど受けず,おおむね38GPa程度となっ ている.ただし,ヤング係数は使用する細骨材の影響を受 けるため,細骨材が変わった場合は,事前に試験で確認 する必要がある.

	W/C	SF 添加量	圧縮強度	ヤング係数			
配合	(%)	(vol.%)	3(MPa)	E ₃ (GPa)			
1	17	0.0	161	37.3			
2	17	1.0	152	37.8			
3	17	2.0	153	37.6			

表-4 ヤング係数の測定結果

4) 引張強度

鋼繊維の添加量と引張強度との関係を図-7 に示す.この結果は配合 No.1~No.3(W/C=17%, W=210kg/m³)の 試験結果である.超高強度繊維補強モルタルの引張強度 は,鋼繊維添加量の影響をほとんど受けず,おおむね 8MPa 程度となっている.

5) 曲げ強度

鋼繊維添加量と曲げ強度との関係を図-8 に示す.この 結果は配合 No.1~No.3(W/C=17%, W=210kg/m³)の試 験結果である.鋼繊維添加量が大きくなるほど,曲げ強度 も大きくなっている.曲げ強度は,鋼繊維が 1vol.%で 15MPa 程度, 2vol.%で 25MPa 程度となっている. 6) 中性化

促進中性化試験の結果を図-9および写真-3に示す.本 結果は配合 No.1 の試験結果である.超高強度繊維補強 モルタルは,促進中性化試験を6ヶ月実施しても中性化深 さは 0mm であり,中性化抵抗性は普通コンクリートッに比 べ,優れている.

図-6 セメント水比 C/W と圧縮強度との関係

図-7 鋼繊維添加量と引張強度との関係

図-9 促進中性化試験結果

写真-3 フェノールフタレイン噴霧(促進中性化 182 日)

7) 凍結融解抵抗性

凍結融解試験後の相対動弾性係数,質量減少率および供試体の状況(480cyc)をそれぞれ,図-10,図-11 および 写真-4 に示す.図-中の Ducs は当社の超高強度繊維補強モルタルを表す.一般に,普通コンクリートの凍結融解試 験では,300cyc で相対動弾性係数が 60%以上あればよいとされているが,当社の超高強度繊維補強モルタルは 480cyc でも相対動弾性係数はほとんど低下していない.また,質量減少率も0%で供試体にスケーリングやひび割れ は全く認められない.したがって,当社の超高強度繊維補強モルタルは,空気量が 2~3%と少ないが,十分な凍結 融解抵抗性を有しているといえる.

図-11 質量減少率

写真-4(a) 凍結融解試験供試体(480cyc,表側)

写真-4(b) 凍結融解試験供試体(480cyc, 裏側)

8) クリープ・乾燥収縮

クリープ試験結果,乾燥収縮試験結果およびクリープ試験状況をそれぞれ,図-12,図-13 および写真-5 に示す.図中のDucsは超高強度繊維補強モルタルを,Nは普通コンクリート(W/C35%)®を表す.超高強度繊維補強モルタルのクリープ係数は,荷重載荷から半年現在で0.6程度であり,普通コンクリートに比べ小さいことがわかる.フランスの超高強度繊維補強材料の指針のによると,RPC(Reactive Powder Concrete)のクリープ係数は1.0以下であると記述されており,当社の超高強度繊維補強モルタルも同様の傾向にあるといえる.一方,蒸気養生後の乾燥収縮ひずみは,300µ程度であり,普通コンクリートと同程度となっている.また,クリープ係数および乾燥収縮ともに,鋼繊維添加量の影響はほとんどないことがわかる.

写真-5 クリープ試験状況

3.曲げ破壊実験(ポステン供試体)

(1) 目的

超高強度繊維補強モルタルを用いた低桁高 PC 部材の特性を確認するため,プレテンション方式およびポストテン ション(以降,ポステン)方式で PC はり供試体を製作し,曲げ破壊実験を行った.本実験では,超高強度繊維補強モ ルタルを使用した PC はり部材の 曲げ耐力, ひび割れ耐力, 破壊形態, たわみ,および 終局ひずみ,等 を検討した.なお,ここでは紙面の関係上,ポステンPCはりの結果についてのみ報告する.

- (2) 実験方法
- 1)供試体および載荷方法

(供試体一般図,諸元および載荷状況をそれぞれ,図-15,表-5 および写真-6 に示す,供試体は,鋼繊維の有無を パラメータとした 2 体とした.プレストレスの導入はポストテンション方式により行った.断面寸法は,幅 0.4m,桁高 0.40m,のI形断面とし,支間は12.0m,桁高支間比は1/30とした.プレキャストセグメント工法の検討を行うため,供

試体は鋼製の仕切板で3分割し,プレスト レスを導入して一体化した. セグメント継目 はドライジョイントとし,一体化する前にエポ キシ樹脂系の接着剤を塗布した.載荷は, 単純支持した供試体の中央部に 2 点集中 荷重を静的に作用させて行った、その際の 純曲げ区間は1mとした.

衣	-5	1.兴武1	4の 宿元		
ファイバー				有効	

	圧縮強度	ファイバー			有効		
	28	添加量	桁高	支間	緊張力	P _{crd} *	Pud**
供試体	(MPa)	(vol.%)	支間比	(m)	(kN)	(kN)	(kN)
B-4	185	0.0	1/30	12.0	1886	134	271
B-5	185	1.0	1/30	12.0	1886	134	271

*Perd:ひび割れ発生荷重の計算値(桁下縁応力度 8MPa) **Pud:曲げ破壊荷重の計算値

120

せん断キー(28)

400 272

28

PC鋼材(12S15.2)

320 400

8

セグメント継目部 400

¢

160 120

7 -D10 端部

図-15 供試体一般図

PC鋼材(12S15.2)

写真-6(a) 載荷実験状況(載荷前)

写真-6(b) 載荷実験状況(曲げ破壊直前)

2) 使用材料

本実験における使用材料,モルタルの配合,強度性状および試験状況をそれぞれ,表-6,表-7および表-8に示す. 超高強度繊維補強モルタルの練混ぜ方法および養生方法に関しては,図-2および図-3と同様である.

表-6 使用材料						
材料 12号 摘要						
セメント	С	シリカフュームセメント(三菱マテリアル製),密度 3.08g/cm ³				
鋼繊維	SF	OL13/.16(ベカルト社製) , 引張強度 2340MPa 長さ 13mm , 径 0.16mm , アスペクト比 81 , 密度 7.85g/cm3				
細骨材	S	砕砂(山形県東根産) 表乾密度 2.57g/cm³ , 吸水率 2.59% , FM2.95 , 最大寸法 5mm				
高性能 AE 減水剤	SP	マイテイ 21WH				
鉄筋(SD295A)	-	D6∶降伏点強度 332MPa,引張強度 514MPa D10∶降伏点強度 373MPa,引張強度 527MPa				

表-7 示方配合

配合	打設日	W/C	Air	SF 量		単位	重(kg/m³)		SP/C	借 老**			
		(%)	(%)	(vol.%)	W	С	S	SF*	(%)				
1	5/12	17	2.0	0.0	210	1235	948	0	3.0	B-1 , B-3 , S-1 , S-2 , S-5 , S-6			
1'	5/18	17	2.0	0.0	210	1235	948	0	3.0	B-4			
2	5/12	17	2.0	0.5	210	1235	948	40	3.0	S-3 , S-4 , S-7 , S-8			
3	5/12	17	2.0	1.0	210	1235	948	79	3.0	B-2			
3'	5/18	17	2.0	1.0	210	1235	948	79	3.0	B-5			

*鋼繊維は外割で添加,**供試体

表-8 強度性状

一 一		縮強度	ヤング係数 曲げ強度		引張強度*	借 老
	₃ (MPa)	28(MPa)	E ₂₈ (GPa)	_b (MPa)	t(MPa)	備行
1	168.2	169.7	39.4	-	9.9	B-1 , B-3 , S-1 , S-2 , S-5 , S-6
1'	173.2	185.3	41.2	12.2	8.0	B-4
2	165.4	175.7	40.5	14.3	8.7	S-3 , S-4 , S-7 , S-8
3	160.5	173.8	40.5	21.2	9.5	B-2
3'	170.4	185.0	41.5	17.0	8.8	B-5
*材龄3	3日					

3) 非線形解析

載荷実験にあたり,ファイバーモデルによる非線形解析を実施した.解析における入力値を表-9に示す.超高強度 モルタルおよび PC 鋼材の材料非線形特性は図-16 のとおりとした.

表-9 入力値							
材 料	項目	記号	特性値				
モルタル	圧縮強度	f'c	150 MPa				
	引張強度	\mathbf{f}_{t}	8.0 MPa				
	ヤング係数	Ec	38.0 GPa				
	終局ひずみ(圧縮)	'cu	3950 µ				
	終局ひずみ(引張)	t	210 µ				
PC 鋼材	引張強度	\mathbf{f}_{pu}	1860 MPa				
	降伏強度	0.84fpu	1570 MPa				
	降伏強度	0.93fpu	1730 MPa				
	ヤング係数	Ep	200 GPa				

*超高強度モルタルの特性値は,強度試験結果より定めた.

図-16 材料の非線形特性

(3) 実験結果および考察

1) 荷重と変位との関係

ポステンPCはりの曲げ破壊実験の結果,および荷重と変位との関係をそれぞれ,表-10および図-17に示す.ひび 割れ耐力の計算値は桁下縁の引張応力度が引張強度(8MPa)に達する荷重であり,曲げ耐力の計算値は終局ひず みを3500µとして破壊抵抗モーメントにより求めた荷重である.なお,計算値の算出では,曲げ上げによるPC鋼材の シース内での偏心を考慮し,PC鋼材位置はシース中心から15mm上方とした(写真-7,図-18参照).

すべての供試体において,ひび割れ荷重および曲げ破壊 荷重は,計算値を上回っており,超高強度モルタルを用いた ポステン梁も,所要のひび割れ耐力,および曲げ破壊耐力を 有していることが確認された.B-4とB-5とを比較すると,曲げ 破壊荷重は鋼繊維を添加したB-5の方が10%程度向上して いる.これは鋼繊維が引張材として機能したためと推察され る.鋼繊維を添加していないB-4と非線形FEM解析の結果 とを比較すると,B-4の実測値が若干小さい傾向にある.これ は,PC 鋼材のシース内での偏心のため,PC 鋼材の偏心量 が小さくなったためと考えられる.低桁高PC梁の設計におい ては,PC 鋼材のシース内での偏心を考慮するのが望ましい と考えられる.

役 10 ホバノン 1 0 はりの 曲り 阪 祝天 感点不									
		ひび割れ発生荷重			曲げ				
	SF*	実測値	計算値		実測値	計算値			
供試体	(vol.%)	(kN)	(kN)	比	(kN)	(kN)	比	破壊形態	
B-4	0.0	140	134	1.04	304	271	1.12	桁上縁の圧壊	
B-5	1.0	170	134	1.27	335	271	1.24	桁上縁の圧壊	

表-10 ポステン PC はりの曲げ破壊実験結果

*鋼繊維添加量

写真-7 PC 鋼材の偏心状況

図-18 PC 鋼材の偏心

2) たわみ

弾性範囲の荷重と変位との関係を図-19 に示す.計算 値は,弾性理論に基づき,式(1)により算出したものである. すべての供試体において,ひび割れが発生する前のたわ みは,計算値とよく一致しており,たわみの算出には弾性 理論を適用できることが確認された.鋼繊維を添加した B-5 のたわみは,鋼繊維を添加していない B-4 のものとほ とんど同値となっている.鋼繊維の添加は,弾性範囲のた わみにはほとんど影響しないことがわかる.

$$\delta = \frac{\mathbf{P} \cdot \mathbf{a}}{48 \cdot \mathbf{E} \cdot \mathbf{I}} \left(3 \cdot \mathbf{l}^2 - 4 \cdot \mathbf{a}^2 \right) \quad \cdots (1)$$

ここに, :支間中央部のたわみ, P:載荷荷重, a:せん 断支間 E:ヤング係数, I:断面 2 次モーメント, /:支間 3) 破壊状況

ポステン供試体の破壊状況を写真-8 に示す.鋼繊維を添加していない B-4 は断面全体が破壊しているが,鋼繊維 を添加した B-5 は桁上縁のみの破壊となっている.鋼繊維を添加することで,破壊形態は大きく改善されることが確認 された.

写真-8-1 破壊状況(B-4 供試体)

B-5:鋼繊維 1.0%

写真-8-2 破壊状況(B-5 供試体)

4) 桁上縁のひずみ

荷重と純曲げ区間における桁上縁のひずみを図-20 に示す.すべての供試体において,終局ひずみは4000µを超えており,超高強度モルタルの終局ひずみは通常のコンクリートと同程度以上であることが確認された.鋼繊維の有無による終局ひずみの差は認められない.

5) ひび割れ性状

純曲げ区間の曲げひび割れ状況を写真-9および図-21 に 示す.鋼繊維が添加された B-5 では,曲げひび割れ間隔が 小さく,ひび割れの分散性がよいことがわかる.

写真-9(a) ひび割れ状況

写真-9(b) ひび割れ状況

図-21 ひび割れ発生状況

支間中央部の鉄筋ひずみとひび割れ幅との関係を図-22 に示す.ひび割れ幅の計算値は,コンクリート標準示方書 ⁹⁾ に準じて式 2 により算出した.鋼繊維を添加していない B-4 に関しては,ひび割れ幅は,土木学会式と近い値となってお り,超高強度モルタルを用いたポステン PC はり部材におい ても,通常のコンクリートと同様に,ひび割れ幅を算出できる と推察される.鋼繊維を添加した B-5 の曲げひび割れ幅は, 鋼繊維を添加していない B-4 に比べ,小さいことがわかる.こ れは,鋼繊維を添加した場合は,ひび割れの分散が良くなる ため,ひび割れ幅が小さくなるものと考えられる.鋼繊維を添 加した超高強度モルタルに関しては,式(2)により算出したひ び割れ幅は安全側の値になると考えられる.

図-22 鉄筋ひずみとひび割れ幅との関係

 $\mathbf{w} = 1.1 \cdot \mathbf{k}_1 \cdot \mathbf{k}_2 \cdot \mathbf{k}_3 \cdot \{4\mathbf{c} + 0.7(\mathbf{c}_s - \phi)\} \cdot [\sigma_{\mathrm{pe}}/\mathbf{E}_s + \varepsilon'_{\mathrm{scd}}] \quad \cdots (2)$

ここに, w: 曲げひび割れ幅, k_1 , k_2 および k_3 :鋼材の表面形状, コンクリートの品質および鉄筋の段数の影響を表 す係数, 鋼材の形状がひび割れ幅に及ぼす影響, c: かぶり, c_s :鋼材中心間隔, :鋼材径, k:鋼材の付着性状を表 す定数, p_e :鋼材応力度の増加量, E_s :鋼材のヤング係数, ' s_{cd} : 収縮およびクリープ等によるひずみ

5. せん断破壊実験

(1) 目的

超高強度繊維補強モルタルを用いたはり部材のせん断特性を確認するため, RC および PC はり供試体を製作し, せん断破壊実験を行った.本実験では,超高強度繊維補強モルタルを使用したはり部材の せん断耐力, 破壊に 至るまでの過程, 破壊形態,および 鋼繊維の効果,等を検討した.

(2) 実験方法

供試体一般図,諸元および載荷状況写真をそれぞれ,図-23,表-11および写真-10に示す.供試体は,補強方法, 鋼繊維の有無およびせん断補強筋の有無をパラメータとした8体とした.載荷は,単純支持した供試体の中央部に2 点集中荷重を静的に載荷して行った.その際の純曲げ区間は0.3mとした.せん断破壊を先行させるため,スチール ファイバーの添加量は0.5vol.%とした.

断面図

-20 177114114 11212

	2011 四時時の時代										
			ファイバー		有効						
	補強	圧縮強度	添加量	せん断	緊張力		支間	有効高	P_{mud}^*	P _{sud} **	P _{sud} ***
供試体名	方法	28(MPa)	(vol.%)	補強筋	Pe(kN)	a/d	l(m)	d(m)	(kN)	(kN)	(kN)
S-1	RC	169.7	0.0	無	0	3.0	2.4	0.35	687	98	192
S-2	RC	169.7	0.0	D10ctc125	0	3.0	2.4	0.35	687	359	452
S-3	RC	175.7	0.5	無	0	3.0	2.4	0.35	687	98	405
S-4	RC	175.7	0.5	D6ctc125	0	3.0	2.4	0.35	687	201	508
S-5	PC	169.7	0.0	無	155	3.0	2.4	0.35	700	108	192
S-6	PC	169.7	0.0	D10ctc125	155	3.0	2.4	0.35	700	369	452
S-7	PC	175.7	0.5	無	155	3.0	2.4	0.35	700	108	559
S-8	PC	175.7	0.5	D6ctc125	155	3.0	2.4	0.35	700	211	662

表-11 供試体の諸元

-**曲げ破壊荷重の計算値,**せん断破壊荷重の計算値(コンクリート標準示方書に準拠),***せん断破壊荷重の計算値(フランス指針に準拠)

写真-10(a) 載荷状況

写真-10(b) 載荷状況(拡大)

2) 使用材料

本実験における使用材料,示方配合,および強度性状はそれぞれ,表-6,表-7,および表-8と同様である.超高強 度繊維補強モルタルの練混ぜ方法および養生方法に関しては,図-2および図-3と同様である.

- (3) 実験結果および考察
- 1) 荷重と変位との関係

せん断破壊実験の結果,および荷重と変位との関係をそれぞれ,表-12 および図-24 に示す.コンクリート標準示 方書に準じて算出したせん断破壊荷重の計算値は,すべての供試体に対して安全側の値を与えている.フランス指 針案に準じて算出したせん断荷重の計算値は,S-1,S-7 および S-8 に対して過大であり,危険側の値となっている. 斜めひび割れの発生荷重は,鋼繊維を添加しない供試体に関しては 100~120kN,鋼繊維を添加した供試体に関 しては,200~220kN であり,鋼繊維を添加した供試体の方が大きい傾向にある.

	曲げ	斜引張		せん断破壊				
	ひび割れ発	ひび割れ		コンクリート標	[準示方書	フランス	指針	
	生荷重	発生荷重*	実験値	計算値	比	計算値	比	
供試体	(kN)	(kN)	(kN)	(kN)	(/)	(kN)	(/)	破壊形態
S-1	-	100	108	98	1.10	192	0.56	斜引張破壊
S-2	-	110	554	359	1.54	452	1.23	せん断圧縮破壊
S-3	20	210	432	98	4.39	405	1.07	せん断圧縮破壊
S-4	20	200	608	201	3.02	508	1.20	せん断圧縮破壊
S-5	60	120	412	108	3.81	192	2.15	せん断圧縮破壊
S-6	60	120	560	369	1.52	452	1.24	せん断圧縮破壊
S-7	50	220	462	108	4.27	559	0.83	せん断圧縮破壊
S-8	60	220	580	211	2.75	662	0.88	せん断圧縮破壊

表-12 せん断破壊実験の結果

*せん断支間部の斜めひび割れが中立軸を超えた荷重

図-24 荷重と変位との関係

2) 破壊形態

各供試体の破壊状況を写真-11 および図-25 に示す.S-1 は斜めひび割れが発生した後,直ちに耐荷力を失う斜 引張破壊であった.S-1 以外の破壊形態は,斜めひび割れが発生した後もしばらく耐荷力を有し,載荷点付近の桁 上縁が圧壊するせん断圧縮破壊であった.

写真-11 破壊状況

図-25 ひび割れ状況

3) せん断耐力式の検討

せん断耐力 V の実験値と計算値との比較を図-26 に示す.計算値は,コンクリート標準示方書およびフランス指針 案に準じたものであり,表-13 のとおり算出した.左図はコンクリート標準示方書に準じた計算値との比較,右図はフラ ンス指針案に準じた計算値との比較である.フランス指針案に準じた計算値の算出において,鋼繊維が負担する引 張応力度 fは 3.0MPa と仮定した.これは,鋼繊維を 2.0vol.%添加した RPC(Reactive Powder Concrete)の f が 12MPa であり⁶,今回の実験における鋼繊維の添加量が上述の RPC の 1/4(0.5vol.%)であることから決定した.

左図のようにコンクリート標準示方書に準じてせん断耐力を計算した場合,すべての供試体において実験値は計 算値を上回っている.コンクリート標準示方書に準じたせん断耐力の計算値は,安全側の値を示すことが確認された. 一方,右図のようにフランス指針案に準じてせん断耐力を計算した場合,S-1,S-7およびS-8において実験値が計算 値を下回った.実験値が計算値を下回ったのは,S-1 に関しては載荷前に供試体に収縮ひび割れが発生していたこ とが,S-7およびS-8 に関しては仮定した fの値が適切でなかったことが原因として考えられる.

図-26 せん断耐力の実験値と計算値との比較

当社の超高強度繊維補強モルタルはRPCほどマトリックス が強固でないこと、および鋼繊維の長さが13mmとRPCに 使用されているものより短いことから、実際の fは3.0MPa 以下と考えられる.また、軸方向鋼材量が大きかったことから RC供試体においても斜めひび割れの角度はPC供試体の ものと大差なく、30°程度であった(図-25参照).これらより、

fを 2.0MPa, RC 供試体の を 30°として, フランス指針 案に準じて計算値を算出すると, 計算値と実験値との関係は 図-27 のようになる. 鋼繊維を添加した供試体の計算値と実 験値はよく一致しており, フランス指針案の設計方法に準じ,

f および を適切に設定することで,合理的なせん断に対 する設計が可能になると考えられる.

表-13 せん断耐力計算式

コンクリート標準示方書の	フランス指針案 6)
$V=V_c+V_s$	$V=V_{c}+V_{s}+V_{f}$
$V_c=0.2 \cdot f'_c^{1/3} \cdot d'_p \cdot b \cdot d$	RC : $V_c=0.21 \cdot f_c^{0.5} \cdot b \cdot d$, PC : $V_c=0.24 \cdot f_c^{0.5} \cdot z$
$= 0.2 \cdot f_{c^{1/3}} \cdot d^{-1/4} \cdot (100p)^{1/3} \cdot (1 + 2M_o \land M_u) \cdot b \cdot d$	$V_s=f_{sy}$ · A_w · z / s
$V_s = f_{sy} \cdot A_w \cdot z / s$	$V_{f} = f / tan \cdot b \cdot d$
ここに	ここに ,
V∶はりのせん断耐力	Ⅴ∶はりのせん断耐力
Ⅴ。∶コンクリートが負担するせん断力	Ⅴωコンクリートが負担するせん断力
f'c:コンクリート圧縮強度	f。:コンクリート圧縮強度
b∶梁の幅 , d∶梁の有効高さ , p∶引張鋼材量	b∶梁の幅,d∶梁の有効高さ
M₀: デコンプレッションモーメント, Mu∶曲げ耐力	Vs∶スターラップが負担するせん断力
Vs∶スターラップが負担するせん断力	f _{sy} :スターラップの降伏点強度
fsy:スターラップの降伏点強度	As∶スターラップの断面積 z∶アーム長(=7/8 d)
As:スターラップの断面積	Vf:鋼繊維が負担するせん断力
z:アーム長(=7/8·d)	☆鋼繊維が負担できる引張応力度
	: 圧縮ストラットの角度(斜めひび割れの角度)
	$(\mathbf{RC}; 45^{\circ}, \mathbf{PC}; 30^{\circ})$

6.疲労実験

(1) 目的

桁高が低い場合は活荷重による変動応力度が大きくなることから,ダックスビーム工法では超高強度繊維補強モル タルの疲労に対する照査が必要と考えられる.しかしながら,超高強度繊維補強モルタルの疲労の照査にコンクリート 標準示方書⁹⁰の疲労強度算定式が適用できるかは不明であるため,疲労実験を実施し,その適用性を検討した.

(2) 実験方法

1) 供試体および載荷方法

供試体諸元,供試体一般図および実験状況をそれぞれ,表-14,図-28 および写真-12 に示す.供試体は,幅 0.10m,高さ0.22m,支間1.5mのPCはりとした.PC鋼棒の緊張力は上下とも同じで,1本あたり415kNとした.こ れは最大荷重時に供試体下縁に引張応力度を生じさせない緊張力である.荷重は単純支持した供試体に支間中央 部の純曲げ区間が200mmとなるよう載荷した.本疲労実験の着目点は,純曲げ区間部の供試体上縁であり,この部 分の変動圧縮応力 が42MPaとなるよう最大荷重を決定した. 42MPaは本供試体が200万回で破壊する 応力レベルである.なお,繰返し載荷の周波数は2.5Hzとした.

図-28 供試体一般図

写真-12 疲労実験状況

				P: = =	IN CHEVILL HERE	•			
	断面	寸法			コンクリート		載荷荷	重 P(kN)	
			PC 鋼棒	変動応力	設計基準				たわみ
	幅	高	緊張力*	**	強度	変動応力比	最大	最小	計算値
供試体	(m)	(m)	(kN)	(MPa)	f'c(MPa)	/(f'c - p)	Pmax	Pmin	(mm)
	0.10	0.22	415	42	120	0.54	131	5	3.00
*1 本あたりの)緊張力 , **	*着目点に	おける						

表-14 供試体諸元

2) 使用材料

使用材料,モルタルの示方配合およびモルタルの強度をそれぞれ,表-2,表-3および表-4に示す.練混ぜ方法および養生方法に関しては,図-2および図-3と同様とした.

表-15 使用材料

材 料	記号	摘要
セメント	С	シリカフュームセメント(三菱マテリアル製),密度 3.08g/cm ³
细始生	CE	OL13/.16(ベカルト社製), 引張強度 2340MPa
亚 则 於	SF	長さ 13mm , 径 0.16mm , アスペクト比 81 , 密度 7.85g/cm³
細骨材	S	砕砂(水島工場), 表乾密度 2.57g/cm ³ , 吸水率 1.72%, 最大寸法 5mm
高性能 AE 減水剤	SP	マイテイ 21WH
PC 鋼棒	-	32 B 種 1 号(SBPR 930/1080)

表-16 示方配合

W/C	Air	SF 量		SP/C			
(%)	(%)	(vol.%)	W	С	S	SF	(%)
17	2.0	1.0	210	1235	948	79	3.0

表-17 強度性状

	蒸気養生直征	 (材齢 4 日)		材齢 28 日				
圧縮強度	ヤング係数	引張強度	曲げ強度	圧縮強度	ヤング係数	引張強度	曲げ強度	
(MPa)	(GPa)	(MPa)	(MPa)	(MPa)	(GPa)	(MPa)	(MPa)	
154	-	7.3	21.9	154	41.0	-	-	

17 / 23

(3) 実験結果および考察

1) 疲労実験の経過

疲労実験の経過を表-18 に示す.載荷繰返し数 200 万回までは,変状はほとんど認められなかった.載荷繰返し数 200 万回においても破壊しなかったため, 載荷を終了した.

2) 変位

載荷繰返し数と変位との関係を図-29 に示す.最小荷重時の変位(残留変位) は,繰返し数200万回で約0.7mmとなっている.残留変位が若干増加している のはクリープの影響と推察される.

3) 桁上縁応力度

本疲労実験の着目点である純曲げ区間部の桁上縁応力度と載荷繰返し数との関係を図-30 に示す.桁上縁の応力度は,桁上縁に配置したひずみゲージの測定値とヤング係数との積により求めた.載荷初期における桁上縁応力度は50MPaとなっており,当初の計算値42MPaより大きくなっている.これは,当初の計算値は抵抗断面を換算断面(PC 鋼棒も抵抗断面として換算)で算出したが,本供試体ではポリエチレンシースを用いたことから,実際の抵抗断面は純断面(シース孔を除いた断面)に近かったためと推察される.

4) 変動応力比と載荷回数との関係

下限応力を考慮した変動応力比 /(f'c - p)と繰返し 数との関係,および疲労実験の結果をそれぞれ,図-31 およ び表-19 に示す.図中の太線は,コンクリート標準示方書 9の 疲労強度算定式であり,式(3)により算出した.実際に作用し た曲げ圧縮応力度で,式(3)により疲労破壊繰返し数を計算 すると15,000回となるが,実際には200万回載荷しても破壊 しなかった.したがって,超高強度繊維補強モルタルの疲労 強度は,コンクリート標準示方書の疲労強度算定式により安 全側に評価できると考えられる.

$$\frac{\Delta \sigma'}{\left(f'_{c} - \sigma'_{p}\right)} = 0.85 \left(1 - \frac{\log N}{K}\right) \quad \cdots (3)$$

ここに, ': 変動圧縮応力, f_c: モルタル圧縮強度, '_p: 下限応力度(今回は導入プレストレス), N: 応力繰返し 回数, K: 定数(通常コンクリート17)

	表-19 疲労試験結果								
		コンクリート		疲労破壊	寝繰返し数				
変動応力	下限応力度	設計基準強度		計算値	実験値				
(MPa)	_p (MPa)	fc (MPa)	/(f _c ' _p)	(回)	(回)				
50	42	120	0.641	15,000	2,000,000 以上				

•		
	- 100	
	-80	● 最小荷重時(131kN) ● 最小荷重時(5kN) ──振幅
E(MPa)	-60	
じつぼ	-40	
	-20	
	0 •	
	1.E+)0 1.E+02 1.E+04 1.E+06 繰返し数N(cyc)
	図-30	繰返し数と桁上縁応力度との関係

載荷繰返し数 N	変状
1 🖸	変状なし
10 回	"
100 回	"
1,000 回	"
1 万回	"
10 万回	"
50 万回	"
100 万回	"
150 万回	"
200 万回	破壊せず

7. 実物大施工実験

(1) 概要

当社広島支店が水島工場において,実物大 PC 桁による施工実験を行ったのでここで紹介する.本実験は,実物大断面での PC 桁の施工性,および プレストレス導入時の PC 桁の挙動,安全性,等を確認するために行われた.

(2) 実験方法

供試体一般図を図-32 に示す.供試体は,桁長 15.6m,支間 15.2m,幅 1.23m,桁高 1.15mのバルブ T 桁である.仕切板で 5 セグメントに分けて製作され,プレストレスを導入することで一体化された.セグメントの継目にはせん 断キーが配置され,緊張前にエポキシ樹脂系の接着剤が塗布された.本供試体には 19S15.2 の PC ケーブルが 4 本配置されており,プレストレス導入時の桁下縁の応力度は 44.9MPa である.

図-32 供試体一般図

(3) 実験結果

1) 超高強度繊維補強モルタルの製造

超高強度繊維補強モルタルの目標値,および供試体製造時のモルタルの性状をそれぞれ,表-20および表-21に示す.供試体製作時のモルタルの性状は,ばらつきが小さく,すべて目標値を満足していることから,当社の製品工場で超高強度繊維補強モルタルが安定的

表-2	0 目標性状
試験項目	目標値
スランプフロー	750±100mm
0打フロー	260±30mm
単位水量推定値	210±10kg/m ³
空気量	2.0±1.5%
圧縮強度	120MPa 以上

に製造できることが確認された.1 バッチの練混ぜ量は最大 0.75m³ であり,1 バッチを練り混ぜるための所要時間は 10~15 分であることから,1 時間に 3m³ 程度の超高強度繊維補強モルタルが製造できると考えられる.

		CE	示方配合(kg/m ³)			繊混ぜ	鋼繊維添加前		鋼繊維添加後			圧縮強度			
バッチ	W/C (%)	SF 添加量 (vol.%)	W	C	S	SF	練混ぜ量 (m ³)	開始時刻	0 打フロー (mm)	W 推定值*1 (kg/m ³)	スランプフロー (mm)	Air (%)	CT*2	4 (MPa)	28 (MPa)
坄	17	0.0	910	1995	049	0	0.50	0.45	-	(Kg/III)	(1111)	(70)	-	(WII U)	(WII U)
	17	0.0	210	1233	940	70	0.30	0.40	260,280	210	770,770	9.1	11	157	_
	17	1.0	210	1233	940 //	19	0.73	9.00	260,255	210	770×770	<i>ω</i> .1	- 11	137	_
		"	"	"	"	"	"	9.20	200×255	-	-	-	-	-	-
	"	"	"	"	"	"	"	9:35	250×250	-	-	-	-	-	-
	"	"	"	"	"	"	"	9:45	265×270	-	-	-	-	-	-
	"	"	"	"	"	"	"	9:55	255×250	-	-	-	-	-	-
	"	"	"	"	"	"	"	10:05	260×270	211	750×730	3.0	13	151	
	"	"	"	"	"	"	"	10:20	240×240	-	-	-	-	-	-
	"	"	"	"	"	"	"	10:30	250×250	-	-	-	-	-	-
	"	"	"	"	"	"	"	10:40	240×250	-	-	-	-	-	-
	"	"	"	"	"	"	"	10:45	265×270	-	-	-	-	-	-
	"	"	"	"	"	//	"	10:55	270×270	209	720×730	2.4	14	153	
	"	"	"	"	"	//	"	14:40	270×270	212	800×820	2.3	14	-	-
	"	"	"	"	"	//	"	14:50	250×250	-	-	-	-	-	-
	"	"	"	"	"	//	"	15:03	275×275	-	-	-	-	-	-
	"	"	"	"	"	//	"	15:22	240×250	-	-	-	-	-	-
	 		// // // // // // // // // // // // //	// // // // // //	 	 	 	$\begin{array}{r} 10:20\\ 10:30\\ 10:40\\ 10:45\\ 10:55\\ 14:40\\ 14:50\\ 15:03\\ 15:22 \end{array}$	240×240 250×250 240×250 265×270 270×270 270×270 250×250 275×275 240×250	- - - 209 212 - - -	- - - 720×730 800×820 - - -	- - 2.4 2.3 - - -	- - - 14 14 - - -	- - 153 - - - -	

表-21 超高強度繊維補強モルタルの性状

*1 UME 法により測定 , *2 コンクリート温度

2) 打設

供試体の製作状況を写真-13 に示す.超高強度繊維補強モルタルは流動性が良好で,型枠バイブレータのみで 打設が可能であった.天端の表面仕上げは,モルタルの凝結が遅いため打設終了から 20 時間後に行った.表面か らの水分の蒸発を防止し,天端のプラスチック収縮ひび割れを防止するため,打設終了後すみやかに養生剤を天端 に塗布した.蒸気養生終了後の供試体には,ジャンカやひび割れなどの不具合は認められなかった.

写真-13 供試体の製作状況

3) 緊張

供試体の緊張状況,およびプレストレス導入時の桁の挙動をそれぞれ,写真-14 および表-22 に示す.プレストレス 導入時の桁の挙動は,図-33 に示すとおり,桁の短縮量,鉛直方向変位および水平方向変位とした.PC 桁供試体に は14000kN ものプレストレス力が導入され,桁下縁応力度は45MPa 程度になるが,供試体に角欠け,ひび割れ,

およびセグメント継目のずれ,等の不具合は認め られなかった.また,プレストレス導入時の桁の上 そり量および桁の短縮量は計算値とほぼ一致して おり,プレストレス導入時の桁に異常な挙動は認 められなかった.

表-22	プレストレス導入時の桁の挙動
------	----------------

	実測値 (mm)	設計値 (mm)	差 (mm)	許容差* (mm)
短縮量	5.3	5.3	0.0	±15
鉛直方向変位(支間中央部)	23.0	24.1	-1.1	± 8
横方向変位(支間中央部)	1.0	0.0	1.0	10

*設計値との許容差(JISA 5373 付属書 2)

写真-14 緊張状況

8.まとめ

(1) 材料試験

材料試験の結果より,超高強度繊維強モルタルの基本配合を水セメント比17%,単位水量210kg/m³に決定した. 基本配合において,中性化試験,凍結融解試験,クリープ試験および乾燥収縮試験を行った結果,これらに関す る性状はすべて,普通コンクリートに比べ同等以上であることが確認された.

塩分拡散係数については,現在,電気泳動法と浸漬法で試験中である.結果に関しては別の機会にご報告する. (2)曲げ破壊実験(ポステンはり)

超高強度モルタルを使用した低桁高ポステン桁の載荷実験より,以下のような知見が得られた.

曲げ耐力は破壊抵抗モーメントにより算出した計算値を上回った.曲げ耐力の算出は,通常の PC 橋と同様,破壊 抵抗モーメントにより算出できると考えられる.ただし,シース内の PC 鋼材の偏心は考慮するのが望ましい.

ひび割れ耐力は,下縁の応力度がモルタルの引張強度に達する荷重と一致した.ひび割れは,通常の PC 橋と同様,桁の縁応力度で制御できると考えられる.

鋼繊維を添加しない場合のひび割れ幅は,コンクリート標準示方書のひび割れ幅算定式とほぼ一致した.鋼繊維 を添加した梁のひび割れ幅は,鋼繊維を添加しないものに比べ小さく,ひび割れ幅算定式は安全側の値となる.

梁上縁の終局ひずみは 4000 µ を上回った. 破壊抵抗モーメント算出時の終局ひずみは 3500 µ として良いと考えられる.

鋼繊維を添加することで,曲げ耐力の向上,および破壊形態の改善が認められた.

(3) せん断破壊実験

せん断破壊実験の結果,以下のような知見が得られた.

すべての供試体に関して, せん断耐力はコンクリート標準示方書に準じて算出した計算値を上回った. 超高強度 モルタルを用いた梁のせん断耐力は, 通常の PC 橋と同様, コンクリート標準示方書のせん断耐力式で算出できるこ とが確認された. ただし, 鋼繊維を添加した供試体のせん断耐力は, コンクリート標準示方書に準じた計算値の 3~4 倍程度となり, かなり安全側の値となった.

鋼繊維を添加しない RC 供試体(S-1, S-2)において,載荷前に収縮による初期ひび割れが認められたが,鋼繊維 を添加した供試体およびプレストレスを導入した供試体については,初期ひび割れは発生しなかった.

鋼繊維を添加することで,初期の収縮ひび割れの防止,斜めひび割れ耐力の向上,およびせん断耐力の向上が 認められた.

鋼繊維を添加した供試体の斜めひび割れ荷重は,フランス指針案の式に近い値となった.

鋼繊維を添加しない供試体の斜めひび割れ荷重は,コンクリート標準示方書式に近い値となった.

フランス指針案に準じて鋼繊維が負担できる引張応力度 f を適切に設定し,鋼繊維が負担するせん断力を見込むことにより,さらに合理的な設計が可能になると考えられる.

(4) 疲労実験

本疲労実験において PC 梁供試体に実際に作用した変動圧縮応力度は 50MPa で,載荷繰返し数が 200 万回で も疲労破壊しなかった.

上記の変動圧縮応力度で,コンクリート標準示方書に準じて繰返し回数を算出すると15000回となる.

疲労破壊繰返し数の計算値は 15,000 回であるが,実際には 200 万回載荷しても破壊しなかったことから,超高強 度繊維補強モルタルの疲労強度は,コンクリート標準示方書の疲労強度算定式で安全側に評価できると考えられる.

(5) 実物大施工実験

当社の工場において,所定の品質の超高強度繊維補強モルタルを安定して製造できることが確認された.

モルタルの施工性は良好であり,製作した桁に,ひび割れやジャンカ等の不具合は認められなかった.

プレストレス導入時の桁の上そり量および桁の短縮量は,計算値とほぼ一致しており,プレストレス導入時の桁に異常な挙動は認められなかった.

PC 桁供試体には 14000kN ものプレストレス力が導入され,桁下縁応力度は 45MPa 程度になったが,供試体に 角欠けやひび割れ等の不具合は認められなかった.

謝辞

ダックスビーム工法の開発にあたっては,神町工場,水島工場および広島支店 PC 技術グループ,等の方々に多 大なご協力を頂いた.静的載荷実験にあたっては東京工業大学の二羽教授より貴重な助言を頂いた.また,疲労実 験にあたっては山口大学の浜田教授をはじめ研究室の皆様に多大なご協力を頂いた.ここに,ご協力いただいた関 係各位に深く感謝の意を表す.

参考文献

- 1) 桜田道博,雨宮美子,渡辺浩良,大浦隆:超高強度·高じん性材料およびそれを用いた低桁高 PC 橋の開発,ピ ーエス三菱技報, Vol.1, No.1, pp.38-39, 2003.5
- 2) 桜田道博,雨宮美子,渡辺浩良,大浦隆:超高強度高じん性複合材料を用いた低桁高 PC 橋の試設計,土木学 会年次学術講演会概要, Vol.58, No.5, pp.1115-1116, 2003.9
- 3) 雨宮美子,桜田道博,渡辺浩良,森拓也:超高強度繊維補強モルタルの性状とそれを用いた低桁高 PC 橋の試 設計,プレストレストコンクリートの発展に関するシンポジウム論文集,Vol.13,No.1,pp.585-588,2004.10
- 4) 雨宮美子,桜田道博,森拓也,二羽淳一郎:超高強度繊維補強モルタルを用いた PC 梁の性状,コンクリート工 学年次論文集, Vol.27, No.2, pp.1657-1662, 2005.6
- 5) (財)建材試験センター: JIS 原案コンクリートの圧縮クリープ試験方法(案), コンクリート工学, Vol.23, No.3, pp.55-56, 1985
- 6) SETRA, AFGC: Ultra High Performance Fiber Reinforced Concrete, Interim Recommendation, 2002.1
- 7) 宇部三菱セメント(株)技術資料
- 8) 桜田,渡辺,大浦,鈴木:石炭灰を主原料とする高性能人工骨材を用いた PC はり部材の力学的特性に関する 研究,土木学会論文集,No.774 / V-65, pp.27-37, 2004.11
- 9) 土木学会:コンクリート標準示方書構造性能照査編,平成14年版,2002