主要幹線道路直下,小土被りの山岳ナトム施工報告

- 福岡市高速鉄道3号線桜坂工区 -

土木本部 土木統括部土木部 渡部利文

概要:福岡市営地下鉄3号線は,市の2割強の面積に,全市民の4割にあたる50万人もの人が生活する福岡市西南地域の交通渋滞を緩和し,効率的で利便性の高い公共交通体系の確立を図ることを目的としている.この工事は,都心の中央区天神から西区橋本に至る20工区,延長12.7kmの鉄輪式リニアモーターカー方式の小断面地下鉄建設工事である.ここでは,風化頁岩層を多種の補助工法を駆使しながら,掘削工事を完了させた,桜坂工区一般部(都市 NATM(New Austrian Tunneling Method))について,その施工状況,補助工法の検討内容とその評価について報告する.

Key Words:小土被り,都市 NATM,地下水,FEM 解析,AGF,鏡補強,早期閉合

1.はじめに

福岡市には,地下鉄1号線(姪浜~貝塚)と空港線(中州川端~福岡空港)があり,平成17年2月に開業した3号線は,路線12.7km(総延長は16.7km)で,福岡市西南部地区の交通渋滞緩和を図るために,中央区天神を起点として西区橋本に至る地下鉄である.当工区(桜坂工区)は,比較的都心部に近く,天神駅から5つ目の桜坂駅にあたり,駅や地下トンネルが建設される城南線沿線はマンションや商店が建ち並ぶ.

3 号線の施工方法は,駅部では全て開削工法を採用し,駅間部では地質や計画上の条件が合えば,非開削工法であるシールド工法あるいは山岳工法(NATM)を可能な限り採用し,やむを得ない場合に開削工法を採用している.

駅間部での延長内訳は,シールド 2.9km, NATM2.8km, 開削 4.2km となっており, 他都市の地下鉄と比べ NATM 区間が多いことが特徴となっている.当工区は,中央区六本松から桜坂までの延長 810m を施工するが,沿 線に民家,ビル,マンション等が密集した幹線道路(城南線)の直下を,平均土被り約 10m で通過するため,トンネル 自体の安定性はもとより,地表面や近接構造物に及ぼす影響に関しても細心の注意を払わなくてはならない.

図-1 福岡市地下鉄路線図

写真-1トンネル上部の幹線道路(城南線)

渡部利文

2.工事概要

L=165m

L=645m

- · 工事名称 :福岡市高速鉄道3号線桜坂工区建設工事
 · 工事場所 :福岡市中央区六本松4丁目1番地先~桜坂3丁目5番地先
 · 発注者 :福岡市交通局
 · 工 期 :平成9年5月23日~平成14年3月29日(1,772日)
- ・ 工事内容 :工区延長 L=810m
 ・駅 部
 ・一般部
 ・一般部
 ・一般部

桜坂工区は,桜坂駅部(開削工法:延長 165m)と一般部(NATM:延長 645m)からなる延長 810m の工区である. (写真-2)駅,トンネルの計画位置は,全区間にわたり,都市計画道路博多駅六本松(通称:城南線,現況幅員 19m) の直下にあり,線形は道路の線形に合わせ,R=270mとR=420mの反向曲線となっている.NATM 区間は複線断 面,単線断面(駅接続部),およびそれらをつなぐ特型断面からなっており,土被りは約8~12mと非常に小さい.

写真-2 桜坂工区全景(城南線)

図-2 各種工法概要図

3. 地質概要

福岡市の地質は,白亜紀風化花崗岩,古第三紀層砂岩および頁岩を基盤岩とし,表層部に沖積層,洪積層が堆積している.3 号線の NATM は,主に古第三紀を掘削するものである.当工区においても図-3 の通り,地表近くまで 古第三紀層の基盤岩が覆っているが,砂岩と頁岩の区別は困難で,全体として砂質頁岩という表現が適切である.特 性としては,沖積層と接する部分(約 2m)は風化による粘土化が進み,N値 50以下と脆弱であり,沖積層の地下水と 岩盤内の地下水を遮断する不透水層となっている.また,岩盤強度は深度が増すにつれ増える傾向にあるが,トンネ ル付近では亀裂が多く,一軸圧縮強度 10N/mm²前後である.地下水は,自然水位がGL-2.0mと高く,岩盤内水位 は被圧されており,地表面の高低差のため,GL-1.0m~-2.5mと変化している.

また,岩盤内の透水係数は,揚水試験の結果,平均1.45×10⁻⁴ cm/sec であった.

図-3 地質縦断図および岩盤区分

4.トンネルの設計

(1) トンネル断面

3 号線はリニアモーター方式による小断 面地下鉄であり,断面決定にあたってはそ のメリットを最大限に発揮できるように設計さ れた.トンネルの標準断面は,施工性及び 経済性を考慮し複線断面となっているが, 上半アーチ部を在来線のように単心円断 面とした場合,上半部のロスが大きくなるた め,複心円断面形状を採用している.これ により,トンネル高を低くできるものの,トン

ネルが扁平になり,トンネル掘削時の安定度が低下するとともに,二次覆工応力の増加が懸念された. そこで,扁平度(トンネル高/トンネル幅の比)の限度として,扁平形トンネルで実績の多い道路トンネルを参考にし,扁平度を0.65以下とした経緯がある. (図-4)は在来線と3号線の断面比較であるが,内空断面積で34%の縮小となっている.また,駅部付近はホームとの関係から単線トンネルとし,複線部との接続は,大型の扁平断面を設け,徐々に変化する断面としている(図-5).

🧭 株式会社 ピーエス三菱 技報 第3号 (2005年)

図-5トンネル接続概要図

(2) 二次覆工

二次覆工の設計にあたっては,次の理由により,土圧,水圧,及び予想される外力に対し,二次覆工だけで耐えられるように設計されている.

- 1) 都市部であるために, NATM 本来の地山と一体化した一次覆工に期待することは, 将来の地下空間利用の 阻害となることが予想される.
- 2) 地下水への影響が無いように,全周に防水シートを施した完全防水型(ウォータータイト)トンネルとしている.

(3) 支保パターン

トンネルの支保構造は,道路および鉄道トンネルの標準支保パターンを参考にした.適用にあたっては,地山の評価とともに,小土被りの都市 NATM という特殊性を考慮し,有限要素法(FEM(Finite Element Method))解析で妥当性を検証のうえで決定している(図-6).

・支保パターンの妥当性を評価する目的で,以下の検討を実施した.

- 1) トンネル掘削時の地山安定性の検討
- 2) トンネル掘削時の支保部材(吹付コンクリート,鋼製支保工,ロック等)の安定性の検討
- 3) トンネル掘削時の地表面への影響の検討
- ・検討には FEM を用い,2次元平面歪みモデルによる完全弾塑性解析を実施した.
- ・ 掘削工法および支保パターンは, 土質縦断図の RL+10m ラインの位置で地山等級, 隣接工区とのバランス, 過 去の施工例などを考慮して決定している.
- ・当工区の主な地山の物理定数一覧表の作成(地山区分,代表 N 値,粘着力,内部摩擦角,単位体積重量,弾 性係数,弾性波速度,ポアソン比)

単線トンネルは至近距離で併設されるため、特に慎重な施工が要求される区間である。
 地山応力の再配分の回数を極力抑え、かつ効率的なトンネル掘進が可能になるような工法を検討した結果、センターピラー部は繊維強化プラスチック(FRP(Fiber Reinforced Plastics))のダイバーで結束し、3 軸状態を確保した上で両トンネルは全断面で掘削するものとした。

(4) 掘削計画

1) 立坑 · 連絡坑

トンネルの発進基地は全体工程を考慮し,駅部の開削工事と平 行作業を行うため,道路外に工事用地を確保し,深さ17m,本坑レ ベルまでの立坑を設置した.また立坑から本坑までの接続は,本坑 トンネルと交差角約35度で交差する延長60mの連絡トンネルを設 置した(図-7).立坑付近の地質は,GL-7.0m以深に一軸圧縮強度 40~120N/mm²級の B~A 級岩級が分布しており,SMW(Soil Mixing Wall)等の土留壁築造が困難であることから,NATM によ る円形立坑を採用した.なお,地表から5.6mまでは工事期間中の 安定性を考慮し,薬液注入を併用した(図-8).

写真-3 トンネル坑内 (複線から連絡坑方向を望む)

また,発進立坑は防音ハウスで囲い,騒音・粉じん等の外部への発散を防止するとともに, 「人にやさしい Fukuoka City』の壁面デザインや電光掲示板によるニュースの提供など周辺環境へ配慮した(写真-4).

図-7 立坑·連絡工位置図

図-8 円形立坑一般図

写真-4トンネル発進基地

写真-5 トンネル発進立坑(14.0m)

2) 掘削工法

掘削工法は,ベンチ長を調整することにより硬岩から土砂地山ま で広範囲に適用できる上半先進ショートベンチ工法を採用し,都市 部での施工であることから,機械掘削方式とした.

ズリ運搬はタイヤ方式,吹付は湿式方式を採用した(図-9). 以下に主要使用機械を示す.

- ・ 掘削機械:自由断面掘削機(ロードヘッダー200kw級)
- ・ 積込機械:サイドダンプショベル(2.1m³級)
- ・ 運搬機械:ダンプトラック(4t 級 2 台)
- ・ 吹付機械:コンプレッサー搭載一体型
- ・ 削孔機械:2ブーム2バスケットジャンボ

なお, 立坑からのズリ搬出には, 20t 天井クレーンおよび 7m³ 土 砂バケットを使用し, 立坑上部に 125m³ 土砂ホッパーを設置した.

写真-6トンネル掘削状況

図-9 上半先進ショートベンチ機械掘削工法

図-10 AGF 工法概念図

(5) 補助工法

都市部の幹線道路直下を平均土被り10m で掘削するという, NATM にとって非常に厳しい条件を可能とした要因の一つに, 信頼性の高い各種補助工法の開発が挙げられる.

本工事においては、トンネル掘削の目的に応じ以下の補助工法を採用した.

- 1) 前方地山の確認および湧水対策
- 先行水平水抜きボーリング
- 先行変位による地表面沈下防止対策 注入式長尺先受け工法(以下 AGF 工法) AGF(All Ground Fasten)工法は,鋼管と注入材によって,地山を先行補強する長尺先受け工法の一つである. 鋼管の打設はトンネルで通常使用する油圧ジャンボで行い,鋼管打設後,注入材を圧入,地山補強体をトンネ ル前方地山に造成することにより,地山の先行変位を抑制するとともに,切羽の安定性が向上し,施工の安全性 が図られる.(図-10)
- 5.施工経緯
- (1) 立坑掘削

立坑掘削は,防音ハウスおよび薬液注入完了後の平成10年2月より着手した.

土砂部の掘削には 0.4m³ 級バックホウ, 岩盤部は, 1,300kg 級ブレーカーを使用した.

また,支保部材として H 形リング支保工(H-150,H-200),吹付コンクリート(t=200,250mm),および立坑撤去時に 残存しても影響が少ない FRP ロックボルト(L=4.0m)を使用した.計測結果では,内空変位,地中変位,ロックボルト 軸力には大きな挙動は観測されず,安定した状況で施工できた.

(2) 本坑掘削

平成 10 年 8 月に連絡坑の掘削を完了し,9 月から本坑掘削を開始した.

本坑 280m 付近までは,比較的安定した頁岩層での掘削となり,多少の肌落ちはあったものの,フォアパイリング (L=3.0m)で対処しながら,平均月進55m でほぼ順調に掘進した.

本坑 277m より強風化頁岩層での AGF 区間の掘削を開始. 1シフトの AGF 打設(L=12.5m × 22本)に約 1.5 日 を要したため, 平均月進は 40m となった.

本坑 350m 付近で地表面沈下量が管理基準値(レベル :30mm)を越えたため, 掘削を停止した.

計測結果(図-11)より,当初計画の補助工法に対して以下の問題が明らかになった.

- 1) 水抜きボーリングによる地下水位低下が原因で,切羽前方 5D(D:掘削径=約 10m)程度から地表面沈下が約 10mm 程度発生した.
- 2) 8k670m 付近での掘削の影響による先行沈下量および切羽通過後の後行沈下量が当初予想(10mm)より大きく,全体沈下量として許容量を超えた.(地山物性値が設計値よりも小さい)
- 3) 隣接する六本松工区へ到達する区間においては、トンネル直上にトンネルを横断する既設水路やガス管等が 埋設されているので近接施工となる。

図-11 地表面沈下経時変化図(対策前)

図-12 地表面沈下経時変化図(対策後)

- 4) 到達部付近では,長尺先受け工法(AGF 工法)と脚部沈下対策工(フットパイル工)が計画されていが,地質縦 断図によれば,六本松工区に向かって傾斜する地層構成により8k700m付近以降は掘削天端に風化~強風 化頁岩層が次第に出現すると考えられる.
- 5) さらに,到達部ではトンネル天端と洪積世の基底である透水性の大きい dAs 層(滞水砂層) までの厚さが約 2.0mと非常に接近する地質状態であることから,到達部においては,設計値(24mm)より大きな沈下が発生し 近接構造物に有害な影響をおよぼすことが懸念された.

上記の問題に対し,下記の対策工を検討した.

- 1) 水抜きボーリング長を 40m 12.5m ヘ短縮(切羽に湧水を出さない最小限の水抜きとする)
- 2) 小土被りのトンネル掘削時の周辺地山へおよぼす影響や施工上の問題点についての整理と,切羽安定対策工法・地表沈下抑制工法や地下水対策工法についての比較検討.
- 3) 切羽安定および地表沈下対策の補助工法として,土被りが小さいことや地表からの施工の制約条件などを加味し,当初設計で計画されている注入式長尺先受け工法(AGF工法)が条件の厳しくなる当該区間についても最適であることの確認.
- 4) AGF 工法の中でも特に沈下を抑制出来る方法の検討.脚部補強工と連続した構造体を形成するとともに,天端上方だけでなくアーチから側壁部に至るゾーンを補強するためにAGFの打設範囲を120°から180°まで拡げ,トンネル外周にプレアーチゾーンを形成し,変位および後行変位を抑制(FEM解析により効果を確認).
 - · AGF 打設範囲の拡大:120° 180°
- 5) 上記方法よりもさらに沈下抑制効果を発揮できる 方法として, AGF のラップ長を大きくする(3.5m 6.0m)
 - a) 最小先受け長を大きくし切羽前方地山の先 行ゆるみを抑制

- b) トンネル横断面内で AGF 鋼管が 2 重配置されることで,先受け部材の剛性増加による変位抑制効果を増 大させる
- · AGF 先受け長の延長:12.5m 15.5m(先受け効果を高めて先行変位を抑制する)
- (FEM 解析により効果を確認).
- 6) 桜坂工区においては、トンネル掘削断面内にはシルト質砂層(dAs)は出現しないという前提条件より大規模な止水対策は講じられていないが、トンネル上方の既設構造物はこの地層に近接し、トンネル掘削の影響により地下水流出とともに流砂現象が起こり、構造物に影響をおよぼすおそれもあるため、AGF 工法の注入量の増大などにより、地下水特に砂の流動を緩和させることの検討(ただし、地層の大幅な相違などにより地下水の量・圧が増大する場合には、抜本的地下水対策に関する見直しが必要).

上記の検討により,地下水位低下による沈下量(10mm)を 30mm(当初の路面沈下管理基準値)に加算した 40mm という値に対して,大幅に超過しない値に収めることが可能であり,地表面に陥没のおそれのある地表面沈下 勾配(0.6~0.9%:文献での事例)に該当する 60~100mm の沈下は発生しないと考えられる.これらのことから,AGF ラップ長の拡大と打設角度 180°(実際には機械の施工可能範囲とする)案を採用した.

図-11 に対策後の計測結果,図-12 に対策工パターン図を示す.

平成 11 年 10 月 22 日,本坑 547m 地点で隣工区との工区境へ無事到達し,工区境より順次インバート施工を行った.(写真-7,8)

→ 株式会社ピーエス三菱 技報 第3号 (2005年)

写真-7 掘削完了全景(早期閉合)

写真-8 インバート施工状況

表-1 補助工法の分類表

			1	∃ '		Ó	n		tot .	m	346	.l.		
		施	エの安全	性確保)	日辺環境の	の保全	~1	AK AB				
	工法	切	羽安定刻	才策	洌	水	地表面	近接			1		摘	響
		天端の 安 定	鏡面の 安 定	脚部の 安 定	対	策	达 下 対 策	構造物 対 策	硬 岩	袂	岩	土砂		
*	 フォアボーリング (非充填・充填式、注入式) 	0	0					0	0	¢	0	0		
~	・バイブルーフ	0	0				0	0		C	ς,	0	•	
受	- 水平ジェットグラウト (資材攪拌)	0	• ,				0	. 0				.0	. •	
I.	 ・長尺鋼管フォアバイリング (充塡式, 注入式) 	0	°.				0	0		C))	0	•	
	・プレライニング	0	0				0	0		<	>	0	•	-
统	・鏡吹付けコンクリート		0						0	· · 《	>	Ø		
盟	- 錠止めボルト	-	0						0	0	2	. O		
の加	・仮インバート			0			0			<	2	0		
强	・脚部捕強ボルト(パイル)			0			0			<	с.	0	(•)	,
	• 水抜き坑	0	0		6	>	-		0		0	0	۰.	
湖	・水抜きボーリング	0	0		6	D			0	6	3	Ø	•	
対	・ディープウェル	0	0		<	>						. 0	•	
л ці,	・ウェルポイント	0	0		(2						0	• '	_
盟	・注入	0	0	0	.0	9	0	0	0	0	C	0		
遥	・垂直縫地	0	0				0		0	(2	0		_
	・遮断壁					>	0	O				0	•	1
注)	◎:比較的よく用いられる工	法, 〇:北	満合によ	って用い	られる	511	去. •: 通	常のトン	ネル施工	機械	設備	・材料	に対処力	匪

主) ②:比較的よく用いられる工法、〇:場合によって用いられる工法、・:通常のトンネル施工機械設備・材料で対処が困難な対策または、施工サイクルへの影響の大きい対策

' t	切羽安定、地表面沈下防止を目的とし	走補助工法	
工法	概要	適 応 性	評価
非充填式フォアバイリング	鉄矢木、鋼矢板、バイブ等を先方 地山に打ち込み、地山を補強する	施工性が悪く、地山と吹付コ ンクリートとの一体化が図れ ない。	×
充填式フォアバイリング	ロックボルト、鉄筋、バイブ等お よび充填材を使って切羽前方地山 の変位を拘束する。	未固結地山等の不安定な地山 ではポルト間からの土砂の抜 け落ちの心配がある。	×
注入式フォアパイリング	ロックボルト、鉄筋および注入材 を使って切羽前方地山の変位を拘 束する。	自立性の悪い地山においても 注入によるボルト周辺地山の 拘束により、ボルト間からの 土砂の抜け落ちを防ぎ、先受 け効果を発揮することができ る。	Δ
パイプルーフ	坑外または坑内から、 6 60cm 程 度の調管をトンネル外周に沿って 削孔配置する。	地表沈下防止の効果は高い が、設備が大がかりになり、 坑内からの施工では断面をか なり拡幅する必要がある。	Δ.
水平ジェットグラウト	トンネル外周部を削孔し、グラウ ト材を高圧噴射攪拌して地山と置 換し、	専用機械による施工が必要で あるが、先受け効果は高い。	0
注入式長尺鋼管先受け	トンネル外周部に鋼管を削孔・配 置し、鋼管周辺の地山を注入によ り改良し、前方地山の変位を拘束 する。	鋼管周囲への限定注入により、地山の拘束力を高めるため先受け効果は高い。	0
垂直縫地ボルト ·	地表からポルトを挿入したモルタ ル柱を形成し、切羽の安定を図る。	トンネル掘削以前に対象区間 全体が補強されることや、切 羽鏡面までを通して杭材の設 置により補強できるため効果 は高い。	0
菜液注入	抗外,抗内から薬液を注入し、地 山を改良補強する。	改良範囲を限定して注入する 必要があるが、土被りの小さ い部分では注入圧を上げられ ないこともあり、効果に不確 実性を伴う。また、坑内から の注入は、トンネル範工サイ クルに影響を及ぼす。	×

表-2 補助工法一次選定表

	垂直縫地工法		・トンネル繊則に先立ち、地上からゆ 100mm 程度のポーリングを行い、セメントミルクを注入後、D 32 程度の鉄筋を挿入し、地中に多数の抗を構築する工法。切羽の崩壊や幹面の崩壊を防止するとともに、天降崩落、地装沈下を抑制する。	・トンネル獲割に先だって施工するため、短期サイクルに影響しない、 ・一般的には、限定注入を行わないため、地質によってはセメントミルクが追走し、注入量が増大する場合もある。 ・地上からの施工となるため、一部道路を占有する必要があり、交通渋帯を引き施工す可能性がある。	・抗口部や土装りの小さい部分における韓国崩壊、均別崩壊、地表洗下等の破較 の現象か予想される場合に多用される工法である。 ・土装りが比較的大きい場合は、切羽や天鵝の安だも含めた効果を期待すると、 施工延長が長くなる。 一般的な親野方向の低工ビッチは 1.5m であるため、軌間からの土砂の抜け落ち ・一般的な親野方向の低工ビッチは 1.5m であるため、前間からの土砂の抜け落ち の可能性もある。 ・ 垂直純地工は、トンネル新面内の切別安定とトンネル両辺の沿線構造物の防護 を同時にはかれるため、信頼性の刻別安定とトンネル両辺の沿線構造物の防護 を同時にはかれるため、信頼性の強い工活であるが、地上占者の関係から垂直 に打般できない場合には効果が減少する可能性がある。	A ×	・トンホン鐡創前に私山藩塾や回館た、光禄籌造物招議も兼用たき信額性もある が、以地条件により効果が減少する。 ×
表-3 先受工比較表	長尺先受け工法(AGFエ法)		・ドンネル外周部に油圧ジャンボにより、坩腐ビットを用こて22種管方式であ 114mm、L=12.5mの鎖管を一定関係に穿み進入し、このパイプ列により指則に伴うめるのは大防止および天道や切別の追旋防止を行う。 に伴うゆるのは大防止および天道や切別の追旋防止を行う。 ・挿入したパイプサの注入がも限に注入することによの、地口と鎖管の付着力を 植加させたり、蹲管原辺の地山を改良する。	・通常の油圧ジャンポ石橋上でき、大量かりな設備を必要とせず、特殊な作業費 も必要としない。 ・ケーシング組り形式であり、孔麗が子安定な地山でも満工可能。 ・質管のさし角のため、額管の先端部では余瓶、余巻きが発生する。 (第二箇所の手前で支尿上の上げ越し、批げ起しの必要がある)	・パイプルーフと同様に、パイプの関性によりトンネル上部の消重を支持するとともに、注入によってトンネル高辺の地口の拘束力を高め、バイブ間からの土砂の抜け落ちを防止できる信頼性の高い工法である。 ・ 土能りが小さく未固能地山の場合や変形の抑制が必要となる場合に、先行ゆる ・ 土能りが小さく未固能地山の場合や変形の抑制が必要となる場合に、先行ゆる なき防止し、天進・切割の安定を図る工法として採用例が増えている。 。 おぎ防止し、天進・切割の安定を図る工法として採用例が増えている。 。 部語確当 ことも連続性が確保できるため、トンネル全体の沈下を防止し、地表 面沈下に対しても最良の工術である。	0 0	・先行ゆるみを抑制する効果が期待でき、御孔も通常のジャンボを使用できるた め龍工柱・経済性ともに有利である。 ●
	水平ジェットグラウト工法 (RJFP工法)		・アンホラ冬周留に専用線を用ったる 100mm のロッドた創宅が行った後、先編 からセメントミルグを 400kgfem2 の庵圧で満然し、池山で鑽袋し状具体 (密 60cm) 冷形成する日浜。 ・創品のさし角は 6~10 候。	・前孔の専用機、ならびに高圧爆撃改良のための設備を必要とする。 ・適害のさし角のため、弱信の活躍的には余路、米参を方気生する。 ・適圧嗅気改良のため、土装りが小さく教閥な場合は地表への最強の危険性があ る。	・地山を最終による離後沢良すのしつにゃり、テンホン周辺の祐山を確実に決良することかでき、バイノ間からの土砂の抜け落ちも路上である眉頸糸の通ぐ日、狭石める。 秋石める。 第二のめる。 ・風勢だたる地山改良だけでなく、整雪を導入した結論するにともできる。 ・風勢だたる地山改良だけでなく、整雪を導入した結論するにともできる。	× Å	 ・先行のるよや営動サる効果が既添らきに酸粧式通いな、地根への硫化なが指用 杵の問題が取り、統容在ため不知いなる。 ▲
		緒 日 図	施工概要	施工性	編 柱	経済性 上 期	線 小 総

🭎 株式会社ピーエス三菱 技報 第3号 (2005年)

- (3) 六本松到達部での有限要素法(FEM)解析
- 当初設計(8k470,8k670)(いずれもFEM 解析) 補助工法:注入式長尺先受け工法(120°)+レッグパイル工法 地表面沈下量 8k470:24mm(23.7mm) 8k670:10mm(9.8mm) 地下水位低下による沈下量 0mm
- 2) 当初設計条件による照査解析(施工者による後追い解析(8k466))
 補助工法:注入式長尺先受け工法(120°)+レッグパイル工法
 地表面沈下量 22mm(FEM 解析:地下水位低下による沈下含まず)
- 3) 実績(8k670)
 - 全沈下量:40mm(うち水抜き時の水位低下による沈下 10mm) 掘削時の応力解放によるもの:30mm
 実績/予測の比率=30mm/9.8mm 3倍
 当初計画のままの補助工法では,
 22mm × (3 倍) + 10mm=76mm という非常に大きな値になることが予想される.
- 4) 対策工案(その1)

AGF 工法の打設範囲を 120 ° 180 ° に拡大 地表面沈下量 12mm (FEM解析) 推定沈下量=12mm × 3(実績/予測比率) + 10mm(地下水位低下によるもの)=46mm

5) 対策工案(その 2)
 AGF 工法のラップ長を拡大(先受け部材の二重配置による剛性アップ)
 地表面沈下量 11mm (FEM解析)
 推定沈下量=11mm×3(実績/予測比率)+10mm(地下水位低下によるもの)=43mm

図-14 解析構造図(二重配置)

図-15 変形図(二重配置)

8k670m AGF 120°(実施済)の理論沈下量と実績沈下量

8k466m AGF 120°の場合の理論沈下量と予想沈下量

8k466m AGF 180°の場合の理論沈下量と予想沈下量

図-16 理論沈下量と実績沈下量

6.計測結果の総括と補助工法の評価

都市 NATM では,トンネル掘削に伴い,地表面や地中の構造物に変状などの影響を及ぼす恐れがある.そのため,通常の山岳トンネルでの計測A,一次支保応力を計測する計測Bに加え,掘削による先行沈下や地中変位など 周辺地山の挙動を計測する計測Cを要所に配置し,自動計測によりリアルタイムに挙動を監視した.

表-4に計測項目,管理レベル,管理体制を示す.

本工事の計測結果(累計変位量)を表-5に,施工区分と計測結果を表-6示す.

計測		≣∔/泪(1	百日	構築形式	t	僧	管理レベ	ル
分類	ſ		只口	他		Ι	II	III
				単線並列 NATM]	8	11	15
		天端 (mr	r下 n)	複線 NATM		13	19	25
				複線特型 NATM	!	17	26	34
=1				単線並列 NATM		15	23	30
計測	F	内空刻 (mr	変位 n)	複線 NATM		25	38	50 ·
			*	複線特型 NATM		34	51	68
	а			単線並列		at in		
	t	也表ž (mr	七下 n)	NAIM 複線 NATM		15	23	30
				複線特型 NATM				
		ックエ	ドルト車	由力(kN)		88.2	137.2	176.4
	吹付	吹作	オコン ノート	圧縮応力 (N/mm ²)		3.43	5.19	6.86
르노	竹内応	応力		引張応力 (N/mm ²)		0.29	0.49	0.59
副 別 B	方	背面	「土圧	頂部荷重 (kN/m ²))	78.40	117.60	156.80
	鋼	支保_	C 応力	(N/mm^2))	68.60	102.90	137.20
· ·	- A(GF	曲げM (N/m	态力 nm²)		88.20	132.30	176.40
			ひずみ	<u>み量</u>	_	286	571	857
≣∔	地表	表沈	(mn	n)		15	23	30
測	地口	平鉛山	1发位		_		参考值	
С	地口	中水-	<u> </u>		-	-0	参考值	
	间的	泉水上	E ·	奔 頭」。		R/+-#I	<u> </u>	
	/			<u>当年レヘルと</u> /	昌巧	<u>ر ۱۳۹۸ المجامع</u>		
<	i	通常体制 A	别 / 注:	意体制 / 要 B /	注注	意体制 / â C /	按重注意体制 D	>
	/	5	À	A		· .		
			宮理基 (管理レ	年週 宮理者 ベルI) (管理レ	を牛加ノベノ	2 宣与	■ 幸 华 個 • ■ レ ベ ル Ⅲ)	

表-4 計測項目・管理レベル・管理体制

8位上半水平 ガス篭沈下 ト レベル 赤下帯 幹校	1111 1111 1111 1111 1111 1111	18 18 18 18 18 18 18 18 18 18 18 18 18 1	1以下 1以下 ~7(GPG3) 許容値以内 1以下 ~7(GPG3) 許容値以内	I以下 -12 (GP1) 許容値以内 I以下 -10 (GP64) 許容値以内 I以下 -3 (GP0) 許容値以内	187 187 187			面沈下管理基準値・ガス管許容値(Ⅲ) 	管理 - 許谷値(m) 15	23	185	100% P.1 4		5 <i>j</i> ⁵														
後下 内容器	レベル 1.以下 1.以下 1.以下 1.以下 1.2、 1.1、	1 以下 1 以下 1 以下 1 以下 1 2 下 5.8	I以下 - 3.0 I以下 - 2.9 I以下 - 2.9	1以下 - 3.0 1以下 - 4.2 1以下 - 5.2	1以下 - 2.0 1以下 - 3.1 1以下 - 3.0			奏-4.1.3 地表回	輸出てくら	地表面 11 次 下 11	ガス管	· 75% • 1, 24 Nulli •	·	下が発生している	認てきなかした			×			11		ŧ	ā.,		a		
2 下 天皇	レベル 広い 1.以下 - 5.3 1.以下 - 5.5 1.以下 - 5.5 1.以下 - 3.9 1.以下 - 2.9	1117 - 2.3 1117 - 2.3 1117 - 5.5	I 以下 - 2.3 I 以下 - 2.6 - 2.6	1 以下 - 3.7 1 以下 - 4.5	124 - 4.5 124 - 4.5 - 3.6			<u>(an)</u>	15	25 34	30 50	T · 50% • 1, 26 11, 11	11 A/2 A 0/00 - 1	ショを超くる法	ような変状は確			エンインチ	×////	Idm ビットボックン			の / 今部中国市電券	1.5m@12=136		1 3 1 3 1 3	2	
補助 植 表 然日光 法下事	「11.0 11.0 11.0 11.0 11.0 11.0 11.0 11.0		概 注 - 4.0	0.0.0.	1.0			内空変位管理基準修		19	23			しては価値レベンの	のたいないたいと			通道値式	N 10-1-40	- Ville	1.9m e	10.5 m0 約2mm の.5 m0 の.5 m0	E m0,	and the second s	A a a	A A	-リング) 図 - 13 計道観歌区	
(-4.v侧朙	海 一 「 「 」 「 」 「 」 「 」 「 」 「 」 」 「 」 」 「 」 」 「 」 」 」 」 「 」	単線11型 単線1型	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	- - - - - - - - - - - - - - - - - - -	単線Ⅱ型 ^ト			-4.1.2 天磐沼下, 国レベル -	H V V B	線#14 13 線#14 13	位列 # 15 約 # 14 15	<u>発望かる 34</u> ※ 開見添付書あい	20 10 10 10 10 10 10 10 10 10 10 10 10 10	地表面沈下に関 ・ロゴビー	- 121 ・車輌走行				ピットボック	L'	1 9 mg 1		5日回行査(数単/ 13 5日の12=13(1 8 5m 0	/	10-0-0 14-1-1	21, 3m	-אדעם) [
点 置	9 k 0 4 3 L 9 k 0 5 3 L 9 k 0 5 6 L 9 k 0 6 3 L	9 k 0 8 0 1 9 k 0 9 0 L 9 k 1 0 0 L 9 k 1 0 0 L	9 k 0 4 3 R 9 k 0 5 3 R 9 k 0 5 3 R	9 K 0 6 3 R 9 K 0 7 0 R 9 K 0 8 0 R	9 k 1 0 0 R 9 k 1 1 0 0 R			HQ)		天端 複類	内容を		L							,	1		197 CH					
<u>ガス簡沈下</u> 下番 許容	C M at the state of the state	(GP2) 許容値以内 (GP2) 許容値以内 (GP2) 許容値以内	(UP4) 許容値以内	(025) 許容値以内	(GP6) 許容値以内	(GPT) 許容値以内 (GP8) 許容値以内	(GP9) 許容値以内	CP10) 許容値以内	GP11) 許容値以内	<u>GP12) 許容値以内</u> GP12) 許否体以十	UTUJ) 計答個以例 (P14) 許会値N内	6月5) 幹術値に内	GP16) 幹倉庫以内 GP16) 幹倉庫以内	GP18) 幹容値以内	GP19) 許容確以内 GP20) 社会確以由			GP22) 許容値以内	GP23) 許容値以内	GP24) 許容値以内	GP25) 許容值以内	GP26) 許容値以内	GP27) 許容值以内	GP28) 許容值以内	0P29) 許容値以内	6930) 許容值以内		
(上半水平) ※		1 K K			있도 -12	있	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- - -			8 -	4		-18	00-	200	-40	-19 (F -22 (LF -17 (-11 	F -35 (F -27 (<u> </u>	1以下 -31(T MT	I LUF
11			त्रा ता	 							-MI	H M I H M I H H M I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.01 1.01 1.01 1.01	本 招 I I I I I I I I I I I I I I I I I I	本 日 日 日 日 日 日 日 日 日 日 日 日 日	TUT	上 日 日 日 日 日 日 日 日 日 日 日 日 日	工以 工 以 工	NAT NAT		बेटी - 	N I	N I N		+	+++	+
沈 下 内空葵位 レベル 沈下量	1111 1111 1111 1111 1111 1111 1111 11	1.以下 - 3.9 1.以下 - 3.9 1.以下 - 5.1	I以下 - 4.3 I以 I以下 - 6.9 I以 I以下 - 7.6 I以	121 - 7.9 12 121 - 5.0 12 121 - 8.9 12	1115 - 4.9 1115 - 4.9 1115 - 13.5	1以下 - 2.8 1以下 - 3.4 1 1以下 - 6.1	I以下 -4.1 10 I以下 -2.5 10 I以下 -1.6 1	1以下 - 1.8 1以下 - 3.1	I以下 3.1 IN I以下 - 4.4 IU	1以下 - 5.8 1以 1以下 - 4.5 1以 1 N- 5 5 1以	1 NT - 2.3 1 NT 1 NT - 4.4 1 NT 1 NT - 2.3 1 NT	INT - 2.4 INT	127 127 127 127 127 127 127 127 127 127	1.以下 - 3.2 1.以下 1.以下 - 3.6 1.以下	1247 - 1.3 1247 1247 - 2.1 1247 1247 - 5.0 1245	1 NT - 4.4 1 NT T NT - 3.6 1 NT	INF - 2.3 INF	1247 - 1.4 1247 1247 - 5.0 1247	【以下 - 0.5 【以下 【以下 - 3.6 】以下	INF - 4.3 IN- TNF - 3.0 IN-	TWF - 1.8 TP	1.以下 - 2.8 1.1 1.N下 - 2.8 1.1 1.N下 - 2.7 1.1		1 2	INF - 2.0 IU INF - 3.0 IU	1 1 1 2 3 2 1 3 1 3	1.以下 - 2.3 1.以下 - 2.3	IL以下 - 2.8 IL以下 - 4.8
 天 線 沈 下 内空変位 沙下番 レベル 洗下番 	ТР - 0.1 = 12/2/ - 16 - 12 Т - 0.4 - 12/2/ - 1.6 - 12 Т - 1.1 - 12/5 - 2.3 - 12 Т 5.4 - 12/5 - 2.5 - 12 5.4 - 12/5 - 5.1 - 12 5.4 - 12/5 - 5.1 - 5.1 - 12	下。 11 -8.3 [以下 - 3.9 [D] 11 -4.5 [以下 - 5.1 [D] 11 -4.5 [以下 - 5.1 [D]	下 -8.5 1以下 -4.3 1以 11 -9.9 1以下 -6.9 1以 11 -8.6 1以下 -7.6 1以	11 - 9.5 1247 - 7.9 12 11 - 9.9 1247 - 5.0 12 11 - 7.0 1247 - 8.9 12	LL - 7.3 LL - 4.9 LL 下 - 5.7 LL 下 - 4.9 LL	下 - 5.7 1以下 - 2.8 1 下 - 4.1 1以下 - 3.4 1 下 - 3.9 1以下 - 6.1 1	下 - 4.6 I以下 - 4.1 I 下 - 3.0 I以下 - 2.5 I 下 - 4.1 I以下 - 1.6 I	下 - 4.5 【以下 - 1.8 】	F - 2.4 12/F 3.1 12/F - 4.4 12/2	下 - 3.4 【以下 - 2.8 【以 下 - 4.8 【以下 - 4.5 【以 七 - 6.6 【以下 - 4.5 【以	下 - 4.6 【以下 - 3.3 【以 下 - 4.4 【以下 - 4.4 【以 下 - 4.0 【以下 - 2.3 【以	자 - 4.5 INT - 1.6 INT 자 - 4.6 INT - 2.4 INT		F - 5.1 ILF - 3.2 ILF	下 - 3.9 「以下 - 1.3 「以下 下 - 3.6 「以下 - 2.1 「以下 下 - 5.0 「N下 - 5.0 「N下		F - 6.2 INF - 2.3 INF	<u> 4.3 I以下 - 1.4 I以下 - 5.0 I以下 - 4.7 I以下 - 5.0 II</u>	[1] - 4.8 【以下 - 0.5 [以下 [1] - 5.1 [以下 - 3.6 [以下	II - 4.5 IL以下 - 4.3 IL/ II - 4.0 TNF - 3.0 TN-				III - 1.10 - 1.121ト - 5.4 - 1.121 - 5.4 - 1.121下 - 4.5 - 1.131 - 1.121 - 5.4 - 1.131上	E - 3.0 INE - 2.0 IUE - 3.0 IU		E = 5.4 IUE = 3.3 F = 5.2 IUE = 2.3	
教 載 浜 ト 米 端 浜 ト の4線行 またき こくろう 茶下車 「フスラ 茶下車		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-10.0 TWF - 8.5 TWF -4.3 TW -18.0 T~1T -9.9 TWF -6.9 TW -21.0 T~1T -8.6 TWF -7.6 TW	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-21.0 1~11	-5.0 1 M + -5.1 1 M + -2.8 1 -2.0 1 M + -3.4 1 1 M + -3.4 1 -6.0 1 M + -3.9 1 M + -6.1 1	-6.0 INF -4.6 INF -4.1 1 -4.0 INF -3.0 INF -2.5 1 -4.0 TNF -4.1 TNF -1.6 1	-3.0 [WF -4.5]WF -1.8] -5.0 [WF -1.6]WF -3.1]U	-5.0 [LMF -2.4 [NF 3.1 [N -3.0 [LMF -4.2 [LMF -4.4 [D	-4.0 [MT -3.4 [MT -2.8 [M -6.0 [MT -4.8 [MT -4.5 [M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- +.0 1.00 - 4.0 1.00 - 4.2 1.00 - 5.0 1.00 - 4.4 1.00 2.3 1.01 - 3.0 1.01 - 4.1 1.01 2.3 1.01	-8.0 [NT -4.5 [NT -1.6]NT -7.0 TNT -4.6 TNT -2.4 TNT	-5.0 [MT -3.8 [MT -2.0 [MT -5.0 [MT -3.1 [MT -2.0 [MT -5.0 [MT -3.1 [MT -4.4 [MT	-4.0 1.0.7 -3.9 1.0.7 -3.2 1.0.7 -4.0 1.0.7 -5.1 1.0.7 -3.6 1.0.7	-7.0 INF -3.9 INF -1.3 INF -9.0 INF -5.6 INF -5.1 INF -1.4 INF -5.0 INF -5.0 INF	-20.0 1.21 - 4.9 1.27 - 4.4 1.27 -20.0 mm/r - 4.1 1.27 - 4.4 1.27	-41.0 TULE - 6.2 LUE - 2.3 LUE	-47.0 IIIXE - 4.3 IXE - 1.4 IXE -27.0 II~II - 4.7 IXE - 5.0 IXE	-18.0 II~II - 4.8 INF - 0.5 INF -28.0 II~II - 5.1 INF - 3.6 INF	-23.0 II~III - 4.5 I.M.F - 4.3 I.M. -29.0 I.~II - 4.0 T.M.F - 3.0 T.M.	-25.0 II~II~II~1.8 IV -25.0 II~II~II~1.8 IV -25.0 II~II~II~1.4 IV -1.7 IV~1.7 IV -1.7 IV	-29.0 II.~III.~II5.9 I.M.F 2.8 I.D. -29.0 II.~II1.1 I.M.F 2.8 I.D. -27.0 II.~II1.1 I.M.F 2.7 T.D.	-28.0 II.~III - 5.9 I.W 3.2 I.W.	-23.0 11∼11 - 1.5 1121 - 5.0 1121 -22.0 11121: - 5.4 1121⊤ - 4.5 1121	-44.0 111214 - 3.0 11214 - 2.0 1 -42.0 111214 - 3.7 11244 - 3.0 1	-47.0 MU2 + -5.8 L23.2 -48.0 MU2 + -4.8 L20.8 -6.80.8	-40.0 IIINE - 5.4 INE - 3.3 -12.0 ILNE - 5.2 INE - 2.3	3.9 I U F - 2.8
雑野 参振 裕 ト 米 線 流 ト 内容感信 主体 参元庫 してら 満石庫 フスラ 満石庫		本 	À -10.0 LUT -8.5 LUT -4.3 LU -18.0 1~1~1 -9.9 LUT -6.9 LU -21.0 1~1~1 -8.6 LUT -6.9 LU	-22.0 I~II - 9.5 IBF - 7.9 IB -22.0 I~II - 7.0 IBF - 5.0 Ib -22.0 I~II - 7.0 IBF - 8.9 IB		-5.0 1245 -5.1 1255 -2.8 1 -5.0 1245 -5.1 1255 -2.8 1 -6.0 1245 -3.4 1	** -6.0 12F -4.6 12F -4.1 1 ** -4.0 12F -4.1 12F -2.5 1	-3.0 [\$\mathbf{D}\Theta\Theta} - 4.5 [\$\mathbf{D}\Theta\Theta} - 1.8 [\$\mathbf{D}\Theta\Theta} - 1.8 [\$\mathbf{D}\Theta\Theta} - 3.1 [\$\mathbf{D}\Theta} - 1.6 [\$\mathbf{D}\Theta\Theta} - 3.1 [\$\mathbf{D}\Theta} - 3.1 [\$\mathbf{D}	★ -5.0 [以下 -2.4]以下 3.1 [以 -3.0 [以下 -4.2]以下 -4.4 [以	F -4.0 124 -3.4 124 -2.8 124 -6.0 124 -4.8 124 -4.5 124 -6.0 124 -4.8 124 -4.5 124		- 6.0 INT - 4.5 INT - 1.6 INT - 7.0 TNT - 4.6 TNT - 2.4 TNT	## -5.0 1MT -3.8 1MT -2.0 1MT -5.0 1MT -3.1 1MT -2.0 1MT -5.0 1MT -3.1 1MT -3.1 1MT -9.3 1MT -3.1 1MT -3.1 1MT	-4.0 TWF -3.9 TWF -3.2 TWF -4.0 TWF -5.1 TWF -3.6 TWF	-7.0 124 -3.9 124 -1.3 124 -9.0 124 -5.0 124 -5.0 124 -14.0 124 -5.0 124 -5.0 124	-20.0 1.21 -4.9 1.05 -4.4 1.05 -20.0 mm/ - 4.9 1.05 - 4.4 1.05	A ¹ -41.0 III2/F - 6.2 ILI/F - 2.3 ILI/F	-47.0 II.>II.>II.YF -1.4 INF -27.0 II.>II.>II - 4.7 I.WF -5.0 I.WF	-18.0 I~II - 4.8 INF - 0.5 INF > -28.0 II~III - 5.1 INF - 3.6 INF	-28.0 II~II - 4.5 I.MF - 4.3 I.M- -29.0 I.~II - 4.0 T.MF - 3.0 T.N-	G -25.0 II~II - 4.7 I MT - 1.8 I MT - 25.0 II.~ II - 1.8 I MT - 1.8 I MT - 1.8 I MT - 1.7 I MT - 1.	√ -29.0 II~II -5.9 I MA -2.8 I M -29.0 II~II -5.4 I MA -2.8 I M		× -23.0 11×11 - 1.5 1145 - 5.0 114 -32.0 11144 - 5.4 1147 - 4.5 114	F -44.0 IIINE - 3.0 INE - 2.0 I -42.0 IIINE - 3.7 INE - 3.0 I	74 -47.0 IIIUE -5.8 IUF -3.2 -48.0 IIIUE -4.8 IUF -0.8	業 ル40.0 III以上 - 5.4 I 以下 - 2.3 ユース・12.0 I 以下 - 5.2 I 以下 - 2.3	
開調N'字) 雑野 老 載 光 一 米 端 次 ト 内容統征 開調N'字) 上谷 さちゅ こくら 衣下傘 フスラ 後下車	「「「「」」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「 」 「 」 「 「」 「」 「 「」 「」 「 」 「 「」 「 」 「」 「 「 」 「 」 「 「」 「 」 「」 「 「 」 「」 「 「 「」 「 「 「 」 「 「 「 「 「 「 」 「 「 」 「 「 「 」 「 「 」 「 「 「 「 」 「 」 「 「 「 「 「 「 「 「 「 「 「 「 「 」 「 「 「 」 「 」 「 「 「 「	業業には、1000000000000000000000000000000000000		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1.0 1.∞1 1.∞1 1.∞1 -14.0 1.∞1 1.∞1 1.∞1 -8.0 1.ω7 -5.7 1.ω7 -8.0 1.ω7 -5.7 1.ω7	後線II型2.0 I以下 -5.7 I以下 -2.82.82.82.82.82.82.82.82.82.42		-3.0 TWF -4.5 TWF -1.8 T -5.0 TWF -1.6 TWF -3.1 TU	妆 <u>- 5.0 【以下 - 2.4 】以下 3.1 【以</u> - 3.0 【以下 - 4.2 】以下 - 4.4 【以	横線II型 E - 4.0 L以下 - 3.4 L以下 - 2.8 L以 - 6.0 L以下 - 4.8 L以下 - 4.5 L以下 - 4.5 L以		-6.0 [MT -4.5 [MT -1.6 [MT -7.0 [TNT -4.6 [NT -2.4 [NT	鐵鋼II型	-4.0 1 NF -3.9 1 NF -3.2 1 NF -4.0 1 NF -5.1 1 NF -3.6 1 NF	- 7.0 LWF - 3.9 LWF - 1.3 LWF - 9.0 LWF - 3.6 LWF - 2.1 LWF - 4.0 LWF - 5.0 LWF - 4.0 LWF - 5.0 LWF - 7.0 LWF - 5.0 LWF	-20.0 $1 \sim 1$ -4.9 $1 \sim 1$ -4.4 $1 \sim 1$ -2.0	A ⁹ -41.0 III.1 - 6.2 I.U.F - 2.3 I.U.F	-47.0 IIIX: -4.3 IXF -1.4 IXF -27.0 II~II -4.7 IXF -5.0 IXF	► 18.0 I ~ 11 ► 4.8 I ШT = 0.5 I ШT > -28.0 II ~ II - 5.1 I ШT - 3.6 I ШT	遺業1階 -58:0 II~II -4.5 L以下 -4.3 1以- -29:0 I~II -4.0 T以下 -3.0 TN-	G -25.0 II.~III - 4.7 I.N.7 - 1.8 I.D. -25.0 II.~III - 4.7 I.N.7 - 1.8 I.D. -25.0 II.~III - 5.2 I.D.7 - 1.7 I.D.	2010 11~11~11~11~11~11~11~11~11~11~11~11~11~		A -23.0 11∞11 - 1.3 1200 - 2.0 120 -22.0 1101 - 5.4 1207 - 4.5 120	F -44.0 IIINF - 3.0 INTF - 2.0 I -42.0 IIINF - 3.7 INTF - 3.0 I	7447.0 IIIULE -5.8 ILVE -3.2 -48.0 IIIULE -4.8 LVE -0.8	 中国県 ※ 20.0 [[以上 - 5.4 [1975 - 5.4] 第33 19.7 [19.5] 19.5 [19.5] 19.5 [19.5] 	換気候坑 - 3.9 IUIT - 2.8 換気候坊

表-5 計測結果(累計変位量)

(1) 内空変位と天端沈下(A計測)

天端沈下および内空変位測定(A 計測)は,計測の中で最も基本的かつ重要な計測であり,この測定結果を基におよそ地山の状態を知ることができる.基本となるのは計測(天端沈下,内空変位量)で得られたデータから,周辺地山の挙動を判断して,トンネルに作用する荷重の方向性を把握することが重要である.

当工区において得られたトンネル坑内測定結果のうち,天端沈下(G)と内空変位水平測線(C3)の関係について図-17 に示す.天端沈下と内空変位の関係は,土被りが十分確保された完全弾性体においては,天端方向と側壁方向の変位が等しくなるため,天端沈下:内空変位(上半水平測線)=1:2 となる.しかし,当トンネルにおいては天端沈下と内空変位の関係は 1:0.75 となっており,収束変位は天端沈下が内空変位よりも卓越するという結果になった.

その主な理由は

- (1) 土被りが平均 10m と小さいため, グランドアーチの形成が困難であり, トンネル上部の緩み荷重が, トンネルに 上載荷重として作用しやすいこと
- (2) 扁平率の高い断面形状であること
- (3) C 計測においてもトンネル直上部の地中鉛直変位(多段式沈下計)が,多段式傾斜計の水平変位と比較しても 沈下が卓越している測定結果から確認できる
 - よってトンネル周辺の土圧荷重は水平方向よりも鉛直方向が卓越しているものと推測される.

図-17 天端沈下・内空変位(水平測線)の関係

切羽観察による地山評価点と最終変位(沈下)量の関係を図-18,19に示す.

地山総合評価点が低く(地山劣化)なれば,最終沈下量は大きくなる傾向にあるが,評価点の差異に関わらず変位量が管理レベルI (10mm)以内で収束していることから,支保構造は適切であり,補助工法の効果もあったものと判断される.

評価点 = 100-{(A-1)+(B-1)+(C-1)+(D-1)+(E-1)+(F-1)+(G-1)+(H-1)+(I-1)×100/3}/9 トンネル標準示方書[山岳工法編]・同解説(土木学会)より

A	切羽の 状 態	①安 定	②鏡面から岩塊が 抜け落ちる	③鏡面の押し出し を生じる	 ④鏡面は自立せず 崩れあるいは流 失 	⑥その他
в	素 据 面 の 状 態	① 自 立 (昔 靖 不 要)	②時間がたつと額 み肌落ちする (後 普 性)	③自立困難提削後 早期に支保する (先 普 性)	④ 掘削に先行して 山を受けておく 必要がある	ゆその他
с	压缩	① σ c ≥ 1000Kg f of ^>?~打撃 ではね返る	©1000 > g c≧ 200 ハンマ~打撃でくだ ける	③ 200 > σ c≧ 50 軽い打撃てくだ ける	④ 50 Kg f/cnl > σ c ハンマー先食い込む	⑤その他
D	風 化 変 賞	①なし・健全	②岩目に沿って変 色強度やや低下	③全体的に変色強度相当に低下	 ①土砂状粘土状破 砕、当初より未 面結 	ゆその他
E	割れ目の頻度	① 開 隔 d ≧ 1 m	$\bigcirc 1 m > d \ge 20 cm$	(∰20cm> d ≧ 5cm	 ④ 5 cm > d 破砕当 初より未面結 	⑥その他
F	割れ目の状態	①密 着	②部分的に開口	© M 🗆	④粘土をはさむ当 初より未園精	ゆその他
G	割れ目 の形態	① ランダム 方形	@推获 日日	③層状·片状 •板状	 ④ 土砂状・細片状 当初より未固結 	⑥その他
Н	潏 水	①なし・水程度	②間水程度	③集中演水	④全 面 潏 水	⑥その他
I	水による劣化	①な し	②ゆるみを生す	③蚊 55 化	④崩 壞・流 出	ゆその他

(2) 地表面沈下(A計測)

土被りが小さい都市トンネルや,未固結地山あるいは軟岩地山では,トンネル掘削に伴い切羽到達以前から地表 面沈下が発生することが多い.このためトンネル周辺の地山挙動,および地表面の沈下挙動とその範囲を把握し,地 山の安定状況および支保工効果の確認が必要である.一般的なトンネルの変状形態を図-20に示す.

当工区では約 10m 毎に地表部に測点を設け計測を行った.地表面沈下の傾向は下記の通りで施工上の安定は 確保された.

- ・ 沈下は切羽到達以前より兆候が確認される(地下水低下の影響は-5D付近)水抜きボーリンの影響と考えられる.
- ・ 切羽通過後の変位は, 2~3D までは切羽距離の影響下にあり, 3D 以下で安定傾向を示す.
- ・ 最終沈下・収束時間も坑内変状と比較すると遅くなる傾向がある.
- ・ 天端沈下の 5~10 倍の沈下量が発生している.

地表面沈下より当工区における先行変位の状況を見てみると,平均値は約 37.8%(平均沈下量 15.8mm)となり, 一般的に考えられている先行変位率 40%に近い数値が得られた.

施工区間毎の変位率を表-7,図-21に示す

図-20 一般的なトンネル変状の形態

表-7 施工パターン毎の先行変位率

バターン	連絡坑	複線NATM フォアパイル	複線NATM 標準	複線NATM AGF120°	複線NATM AGF180°	単線並列
先行変位率	36, 5%	20.0%	47.1%	39.7%	20.0%	47.0%
収東沈下量(平均)	-11.0mm	-12.9mm	-4.7mm	-25.0mm	-36. Omm	-6.2mm

図-21 地表面沈下の先行沈下量と最終沈下量

(3) 補助工法区間と地表面沈下量の関係

複線 NATM 区間では,多種の補助工法を実施しているが,4区間に分けて地表面沈下の状況を示す.

- A 区間:標準区間(補助工法無し)
- B 区間:補助工法(フォアパイル3.0m)
- C 区間:補助工法(AGF120°)
- D 区間:補助工法(AGF180°+フットパイル)
- ・ 切羽接近最大 5D 手前より変位の兆候が確認されたことから, AGF・薬液注入・フットパイルなどの対策工を実施 している.
- ・ 地表面沈下発生時期と坑内で実施した水抜きボーリング時期は、ほぼ一致している.
- ・ 間隙水圧計(C計測)による地下水位の低下と地表面沈下に因果関係が確認できる.
- ・ 複線 NATM 標準区間では,地表面沈下の坑内変状も安定しているのに対し,対策を実施した区間では,地表 面沈下が顕著である.

これは,切羽状況に大きく影響を受けている.切羽状況(地山総合評価点)と地表面沈下量を図-22 に示す.総合評価点が低いと地表面沈下量は大きくなる傾向にあり,地表面は切羽状況の影響を受けることがわかる.

図-22 地表面沈下地山総合評価点

図-25 周辺地盤地下水位経時変化図(C計測)

(4) 先行変位の比率

先行変位の比率(先行変位/収束変位)の結果を図-26に示す.

全区間での先行変位は 39%となっており,一般的に言われる先行変位発生(35~45%)の範囲内である.しかし, AGF(打設範囲 180°)工法のような強制力の大きい補助工法を採用した区間では,先行変位 20%で,先行変位抑 止効果が高いことが解る.補助工法を併用していない標準区間においては,先行変位 47.6%となっている.

図-26 先行変位の比率(先行変位/収束変位)

表-8 施工パターン毎の先行変位率

区分	А	В	С	D					
施工区分	複線NATM								
補助工法	標準区間	フォアパイル	AGF打設角120°	AGF打設角180°					
先行変位量	-2.0mm	-3.3mm	-9.9mm	-9.0mm					
収束沈下量	-4.6mm	-12.9mm	-24.8mm	-36.0mm					
此 得亦位或	47.6 %	20 %	39.3 %	24.6 %					
<u> </u>		37.	9 %						

補助工法の効果を評価するために,沈下特性曲線を作成した.(図-27)

- AGF 工法に関しては, C 区間(打設角 120°)・D 区間(打設角 180°)を比較すると, D 区間の方の応力解放率 が低く, 先受け効果が出ている.
- ・ AGF 区間のシングル・ダブルの沈下特性曲線(図-28)からも先行沈下抑制効果が現れており,先受け効果が高いことがわかる.

図-27 補助工法による沈下の特性

図-28 AGF 区間沈下特性(シングルとダブル)

7.まとめと今後への提言

桜坂工区では,一部の区間で30mm以上の地表面沈下が発生し,また,薬液注入施工時に道路面が隆起する現象が生じたが,全般的には変位も小さく,補助工法を適所に用いるとともに管理基準の見直し検討を行いながら,厳密な管理のもとで合理的な施工を進めた.その結果,埋設管等の近接構造物に有害な影響をほとんど与えずに,工事を完了することができた.(平成14年4月に本坑工事は完了)

以下に,沈下の発生状況と補助工法の適用状況,ならびに今後の同種の地山における施工法に関する考察等を 述べる.

(1) 変位の発生状況と対策工

桜坂工区全区間における坑内変位は10mm以下と小さく,地表面沈下も約半分の区間で10mm以下の小さな値であった.さらに,地表面沈下では全体の約1/3が10~30mmの沈下量であったが,残り(全体の約1/6)において30mmを超える沈下量が発生した.

このうち, 六本松方向に向かう複線標準断面区間(B~A区間)では, とくに変位が小さく, 先行変位は2~4mm, 最 終沈下量は5mm(A区間), 13mm(B区間)であった.

当工区の特徴として,坑内変位が小さくなかでも内空水平変位はほとんど無いことがあげられる.

天端沈下と内空変位の比はおよそ 1:0.75 であったが,全区間を通じて天端沈下・内空変位ともに 10mm 以下で,そのうち,5mm 以下が過半を占めている.これは,掘削時の変位発生が短時間に起こり,坑内での計測では捉えられないことも一因としてあげられるが,頁岩層が比較的安定しておりトンネルの変形挙動自体が小さかったことが大きな要因として考えられる.

その後, C 区間に入ってから地表面に大きな沈下が発生した.これは地山の性状が六本松側に向かって悪くなっていったことが大きな要因であるが,切羽からの先行水抜きボーリングで地下水位を低下させたことにより,切羽のかなり前方(4~5D)から地表面沈下が生じているという点に特徴がある.この沈下量は10~15mmである.

六本松側に掘進するにしたがい地質条件が悪くなり,掘削に伴う変位が増加し,地下水位低下による先行沈下と 合わせて,当初設定していた管理基準値(30mm)を越える沈下量を発生することが予想されたことから,切羽での地 質状況も鑑み,注入式長尺先受け工法(AGF)を補助工法として適用した.なお,この区間(8k670m~8k660m)での 最終沈下量は40~45mmという沈下量が発生した.

AGF 工法の適用により先受け効果が高まり,切羽の安定性向上とともに地表面沈下抑制効果も発揮され,その後の沈下量は8k550m 付近まで20~30mmの沈下量に収まっている.

先行変位発生比率は,標準区間(無対策の区間)で47%なのに対し,対策工実施区間では30%となり,対策工区 間での先行変位発生の抑制効果が計測データより確認された.ただし,水抜きボーリング時の地下水位低下に伴う 先行沈下が生じた区間では,これを含んだ先行変位率として約40%で,他の対策工区間に比べて大きくなっている. D区間に入ると,地質条件がさらに劣化(強風化頁岩層が上半盤まで低下するなど)したことから,それまでの補助 工法の規模では沈下抑制効果が不足し,AGFの先受け長を伸ばしラップ長を大きくするとともに打設範囲を180°ま で拡げるなど,AGFの規模を増強するとともに,脚部補強工(フットパイル:AGP(All Ground Pale))を追加した.

その結果,坑内変位(天端沈下)には抑制効果がみられたものの,地表面沈下には明確な抑制効果が見られず, 六本松方に向かって増加する傾向となった.これは,結果的には,六本松側に向かって当初の想定以上に地層の傾 斜が大きく,上部の強風化頁岩層の被りが薄くなっていたためと考えられる.

その後,上部の滞水した砂層が掘削面付近にまで下がってきたため,AGF 打設時に地下水とともに砂を引き込ん でしまうことから,止水のための薬液注入を行った.この結果,地下水位を低下させずに掘削することができ先行沈下 が少なくなった.また,薬液注入が砂質地盤に対する粘着力の増加,すなわち強度の改良効果をもたらし,長尺先受 けの増強効果も合わせ沈下抑制効果が発揮されたものと考えられるが,最終沈下量は 40mm を超え,計測結果から は,これらの対策工が地山強度の低下をカバーする程度にとどまり,沈下を小さく抑え込むには至らなかったことがう かがえる.

桜坂工区では周辺建築物に対しては傾斜管理値として 1/1000 を用い,道路路面に対しては維持補修の目安とし て掲げられている 30mm を当初の管理基準値に設定していたが,掘削による地下水位低下による沈下量は考慮され ていなかった.

この 30mm という値についても路面の前後(あるいは左右)の相対的な変位の差ととらえていたが,最終的にはガス 管等の埋設物に対する許容値が直接的な(絶対値としての)管理基準となった.

なお,道路面については明確に管理基準値の見直し設定はしなかったが,有害な影響が出始める値として 60mm 程度が一つの目安とし管理した.

この結果、埋設管等の近接構造物に有害な影響をほとんど与えずに掘削を終えた、

全般を通じて,各々の補助工法により,切羽の安定性確保ならびに坑内の変形に対しては完全にコントロールできた.しかし,地表面の沈下に対しては完全には制御できず,地下水の動きによる沈下挙動も含めて上部にある地層の 性状に左右され,一部で沈下量が大きくなったという結果になっている.

(2) 地表面沈下抑制対策工に関する考察

桜坂工区における沈下の発生状況と講じられた対策工の経緯は以上である.今後,同様な立地条件でのトンネル 工事において,管理基準値等の制約条件がますます厳しく設定されるケースが考えられる.こうした与条件に対して, 切羽を開放しながら掘削する NATM で施工する以上,応力解放に伴う地山応力状態の変化等の影響を受け,何ら かの地表面の沈下につながる変位挙動が生じることは避けられない.地下水位低下による沈下も含めて,許容沈下 量が 30mm というような制約条件が課せられた場合にはどのような工法がとれるかについて,以下に考察する.

一般に,トンネル掘削に伴う地表面沈下には,先行沈下・切羽通過時の沈下・後続沈下に分けられる.桜坂工区の 場合,水抜き時の地下水位低下による沈下が 10mm 以上発生しているため,地下水を排除する対策工の場合には 回避できない沈下となる.したがって,この 10mm を阻止するためには地下水位を動かさないで掘削する必要がある. これを実現するための方策は薬液注入工法である.

後述するが,地盤強度改良も兼ね備えたものであれば,滞水層に対しては有効な沈下抑制対策工となると考えられる.

一方,切羽前方 2D 程度手前から発生する沈下の抑制については,当工区でも用いられた長尺先受け工等が有 効である.ただし,さらに,厳密な沈下抑制が要求される場合には,切羽天端の上方の地山をシェル状に防護すると いう役目が大きく,地山を支えるという点では効果の大きい長尺先受け工法に対して,切羽前方の先行沈下をさらに 抑制するためには,掘削していく切羽正面の地山を事前に可能な限り緩ませないことが重要で,そのためには鏡補強 工の長尺化がより有効な手段となる. 頁-26~28 には,長尺先受け工と長尺鏡補強工による切羽安定効果に関する解析結果を示す. この例では,解析ケースとして,三次元有限差分法(FDM(Finite Difference Method))により解析している.

短尺フォアパイリングの場合 長尺先受け工の場合 長尺先受け工と長尺鏡補強工を併用する場合

ここで、の長尺鏡補強工では長尺先受け工(L=12.5m)とほぼ同じ長さ(L=12m)の鏡補強を切羽正面前方に打設している.

結果のうち,地山内変位分布・せん断ひずみ分布を比較すると,やに比べてでは,切羽前方の発生量が小さく補強工により地山が大きく拘束されていることがわかる.その結果,切羽周辺に発生する塑性領域も,に比べでは明らかに小さいことが確認できる.

地表面沈下量の比較では, では に比べて15mm以上, に比べて約10mm近〈低減されている.なかでも, 切羽到達時の地表面沈下量では, は ・ に比べて約75%(=15m/20mm)の低減効果が発揮されている.

さらに,切羽の押出し量を見ると,の長尺先受け工でも約140mmの押出し変位があるのに対し,の長尺鏡補 強工併用では40mm以下と非常に小さく抑えられていることがわかる.(・・では,塑性領域を発生させ緩めながら 掘削するため,切羽の押し出しも多くなる)

解析と実施工では,この切羽の押出し分を掘削時に除去してしまうために,いわゆる過掘り(掘りすぎ)の状況になる.縦断方向で見るとトンネル切羽前方に向けて地山土量の欠損が生じ,結果として地表面に先行的な沈下を引き 起こしてしまい,弾性的(理論的)な挙動以外にも実際の沈下量は大きく出ることが十分に考えられる.

このため,切羽における押出し変位を抑えることが地表面沈下を抑える重要なポイントである.

一方,最終的な沈下量は,はに対して90%(=40m/45mm)程度しか低減効果が現れていないが,これは後続沈下の問題であり,先行変位抑制対策では対処できないものである.

これを抑えるためには断面を早期に完成させることが不可欠である。

🧭 株式会社 ピーエス三菱 技報 第3号 (2005年)

長尺先受け工・長尺鏡補強工の効果に関する三次元解析結果例

(横断図)

単位体積重量	弾性係数	ポアソン比	粘着力	内部摩擦角
()	(E)	()	(C)	()
kN/m ³	MPa		MPa	o
(t/m³)	(kgf/cm ²)		(t/m²)	
21	50	自重解析 0.45	0.007	20
(2.1)	(500)	掘削解析 0.35	(0.7)	30

地山の入力物性値

(c) 切羽押出し量

施工パターン概要図

図-29 短尺フォアパイリングの場合

図-32,33 は,同一トンネルでインバートの施工時期の異なる二つの断面での坑内変位計測結果を示したものである.インバート掘削(インバートコンクリートの打設:インバート閉合)までの経過日数は,上半切羽の通過後,(a)では約30日,(b)では約11日である.このインバート閉合時期の相違により,インバート打設までの変位の増加量に差が生じ,水平内空変位など,(a)の方が大きな変位を生じている.

なお,いずれの断面もインバートを打設すると,ほぼ同じような傾向で変位が収束に向かっている.

これらのことから,後続沈下を収束させる最大の要因は,インバートの閉合(断面の完成)であることがわかる.

このため,後続沈下を小さく抑えるためには,インバート施工を上・下半施工に併進して,かつ,切羽に近い位置で 早期に閉合することが最も有効な方法である.そのためには,上・下半の切羽をできるだけ縮め,ショートベンチ工法 ではなく全断面工法にする必要がある.現実的には 2~3m の補助ベンチを付けた全断面工法とし,インバートを下 半切羽直近で閉合させる掘削工法が有効であろう.

図-32 (a)経時変化図(インバート掘削施工時期 30 日後)

図-33 (b)経時変化図(インバート掘削施工時期 11 日後)

(3) 今後の施工法に関する提言

これまでに考察したように,先行沈下を抑えるためには,長尺先受け工と併用する長尺鏡補強工,後続沈下を抑えるためには,インバートの早期閉合(全断面工法)が有効である.

さらに,切羽通過時の沈下を抑えるためには,いわゆる一次支保の増強は言うまでもない(ただし,時間的要因を考慮して素早く設置できるものが必要).

しかしながら,後続沈下を抑えるために,全断面工法として切羽の加背を大きくすることは,切羽の不安定化を助長 することになるため,切羽の安定性確保が絶対不可欠な条件となり,前項で示した長尺鏡補強工が重要な併用工法 となる.すなわち,長尺の鏡補強工は,後続沈下を抑えるためにも重要な役割を担うことになる.

なお,別の現場で実施された計測では,鏡補強工は切羽が3~4m程度まで接近すると,地山を拘束する力がなくなる(部材軸力が抜ける)というデータも得られており,短尺ではなく長尺の鏡補強工が求められる.

インバートを切羽近傍で打設し閉合することは,掘削の進行が落ちることによるコスト増や,大規模な鏡補強工を行 うことによるコスト(数量)増が想定されるため,費用対効果の評価が必要となるが,制約条件が絶対的である場合には, こうした工法が必要とされることになると考えられる.さらに,上述したが,前方の地山を拘束することで掘削による応力 解放を切羽の直近で一気に行わせることになるため,切羽における一次支保が受ける解放荷重もそれに比例して大 きくなる.したがって,前方の補強工の増大に付随して,支保パターンもさらにランクアップする必要性も生じてくる.

以上より,今後ますます厳しくなる条件下での NATM による施工法としては,切羽前方への長尺補強工を施し,前 方地山を緩ませない状態で維持し,同時に切羽の自立性を高めた状態にした上で,インバートの早期閉合をねらっ た全断面的工法(シールド工法的なやり方を山岳工法で行うイメージで,切羽を内側から拘束圧を与え,できるだけ抑 えておいて,切羽直近で剛な支保(セグメントイメージ)を全断面で巻き立てる)で掘削することが,地表面への影響を 最小限に抑え込む最も有力な方策ではないかと考えられる.本稿が建設コスト縮減の要求から,今後増えてくると思 われる同様な都市 NATM の計画の参考になれば幸いである.

謝辞

本工事の設計・施工にあたり福岡市交通局建設部設計課ならびに第一工事事務所の皆様,そしてご指導・ご協力 頂いた関係各位にこの場を借りて深く感謝の意を表します.

参考文献

1) 福岡市高速鉄道3号線土木構造物実施設計業務(平成8年8月)

- 2) 土木技術 工事報告(2000 年 3 月) 小土被りの頁岩層を NATM で掘る
- 3) トンネル標準示方書(山岳工法編)・同解説 平成8年度版 土木学会
- 注入式長尺先受け工法(AGF 工法)技術資料 1997 年 9 月 ジェオフロンテ協会

写真-4 覆エコンクリート完了全景