プレキャスト RC 橋脚の耐震性に関する研究

1. はじめに

都市内の立体交差工事等は、工期短縮が要求される. こう した要求に対しては、プレキャスト構造を用いた橋脚の利用 が期待されている.

本研究では、2 車線の高架橋を想定して試設計された橋脚の 5分の1縮尺の橋脚模型に対して、振動台による加振実験を 行い、想定される地震動に対する耐震性能評価、地震応答特 性および動的破壊特性の評価および設計用の動的解析モデル との検証を行った.本論文ではこの結果を報告する.

2. 基本構造

橋脚は,高さ方向に分割されたプレキャストセグメントを, 仮設用の PC 鋼材を用いたプレストレス力を利用して組立て た後、シース内にモルタルグラウトを注入し、軸方向鉄筋と して貫通するねじ節鉄筋を挿入して構築される.

作用する曲げモーメントに対しては、一般的な RC 橋脚と 同様、引張力に対しては軸方向鉄筋が、圧縮力に対してはコ ンクリートが抵抗する.また,接合部に作用するせん断力に 対しては接着剤等による摩擦、鉄筋のダウエル作用およびモ ルタルグラウトによって抵抗し、プレキャストセグメントに 作用するせん断力に対しては RC 橋脚同様, コンクリート, 帯鉄筋および中間帯鉄筋で抵抗する.

側面図 (B-B)

図-1供試体全体図

土木本部	基礎部	中井将博
土木本部	基礎部	植村典生

3. 実験概要

3.1 供試体

供試体全体図を図-1に、供試体断面図を図-2示す.

橋脚部は、6個のセグメントに分けて製作を行い、フーチン グ上面から載荷点までの高さを 2785mm とした. 軸方向鉄筋 には D10 (SD345) を使用し,帯鉄筋は D6 (SD295) を 50mm 間隔で配置した.

3.2 実験方法

図-3に試験状況を示す.加振方向は,橋軸方向の1方向 とし、入力地震動は、1995年に観測された兵庫県南部地震の 鷹取 EW 方向の設計用基準波を使用し、時間軸は相似則に従 って 1/√5 とした.また,表-1に示すように,加速度倍率 は段階的に250%まで上昇させた.主要な測定項目は、慣性力 作用位置での相対変位、絶対加速度および軸方向鉄筋のひ ずみおよびセグメント接合面の目開きとした.

図-3 試験状況

表-1 加振ステップ

回数	1	2	3	4	5	6	7
倍率	15%	60%	100%	120%	150%	200%	250%

4. 実験結果

4.1 損傷状況

加速度倍率が 60% (以下 60%加振) において,ひび割れが 発生し,それ以降分散したひび割れが進展し,250%加振に一 部のコンクリートの剥離が生じた.(図-4)また,セグメン トとフーチングの剥離は生じなかった.

図-4 損傷状況

4.2 鉄筋ひずみ

15%加振では最大 627 μ であり弾性範囲内であった. 60% 加振に最大 2032 μ となり降伏した.

4.3 プレキャストセグメント接合面の目開き

60%の加振に 1BL と 2BL の接合部において, 0.3mm の目 開きが生じ,それ以降目開き量も増加した.また,250%加振 では 5.5mm 程度であった.

4.4 耐力・変形性能

60%加振に鉄筋が降伏したため、このときの最大応答変位 16.2mm を δ_y とすると、150%加振は 4.4 δ_y となり、道路橋 示方書に従い算出したときの許容塑性率(μ_a =4.04)相当の 変位が発生した。250%加振は、9.7 δ_y の変位が発生し、残留 変位は 29mm となり、許容残留変位(28mm=h/100)を超え た.また、履歴性状は一般的な RC 橋と同様な紡鐘型を示し、 エネルギー吸収能力を確認できた。

図-5に,道路橋示方書V耐震設計編に従い算出した計算 結果との比較を示す.包絡線は計算結果と概ね同様な形状を 示した.

5. 非線形動的解析

5.1 解析モデル

解析モデルは、一般的な RC 橋脚と同様とした.入力地震 波は、実験時にフーチング上で観測された加速度を使用した. また、加速度を15%~250%まで連続して入力することにより、 累積損傷による剛性の低下を考慮することとした.

5.2 解析結果と実験結果の比較

図-6に150%および250%での解析結果と実験結果の比較 を示す.解析結果の最大応答変位および履歴性状は,実験値 をよく再現できている.

凶一0 胖竹柏木こ天映柏木

6. まとめ

①150%加振において,道路橋示方書V耐震設計編より算出 した許容塑性率(µa=4.04)を超える変位が発生したが,損 傷は軽微なものであり,ひび割れは塑性ヒンジ区間に集中し て発生した.また,残留変位は許容値を大きく下回った.

②250%加振において、約10δyの変位が発生したが、鉄筋の座屈は生じず、コンクリートの剥離が一部生じた程度であった.また、橋脚基部の第1セグメントとフーチング部の剥離はなく、第1セグメントへのコンクリート充填およびフーチングへの埋め込みの効果があったと考えられる.

③プレキャスト RC 橋脚の履歴曲線の形状は一般的なの RC 橋脚と同様でありエネルギー吸収能力を確認できた.また, 最大耐力は道路橋示方書 V 耐震設計編に従い算出した値と同 程度であり,設計上の終局変位を超えた場合でも水平耐力の 低下は見られなかった.

④一般的な RC 橋脚と同様の骨組みモデルを用いてプレキ ャスト RC 橋脚の動的解析を行った結果,解析結果は履歴性 状,時刻歴応答波形,最大値において実験結果を概ね再現で きた.

本研究は,独立行政法人土木研究所と民間3社との共同研 究「耐震性に優れたプレキャストコンクリート橋脚構造の耐 震設計法」の一環として実施した実験である.

Key Words: プレキャスト, RC 橋脚, 耐震性能, 加振実験

中井将博

植村典生